Portal Vein Stenosis in Live Liver Donors after Right Hemihepatectomy for Living Donor Liver Transplantation

Poster No.: C-0530
Congress: ECR 2012
Type: Scientific Exhibit
Authors: S. Choi, K. W. Kim, S. Y. Kim, H. J. Kim; Seoul/KR
Keywords: Abdomen, CT, Stents, Transplantation, Haemodynamics / Flow dynamics, Liver
DOI: 10.1594/ecr2012/C-0530

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

Introduction

Liver transplantation (LT)

• Therapeutic option for patients with end stage liver disease

Living donor LT

• Procurement of partial hepatic lobe from a live donor
 Mainly performed with right-lobe graft: due to importance of graft volume for recipients' outcome

Portal ven (PV) complications

• PV stenosis or thrombosis
 Have been rarely reported in live liver donor after the partial liver procurement

Purpose

• Mild stenosis is not uncommonly encountered in practice
 The optimal cutoff for clinically relevant stenosis has not been established

 To evaluate the range of PV stenosis in live liver donors after the partial liver procurement and to determine the effect on the postoperative liver regeneration and splenic enlargement
Methods and Materials

Donors

- Approved by the Institutional Review Board
- A retrospective study
- Included from November, 2008 to May, 2009
- 92 consecutive live donors (right hepatic lobe without middle hepatic vein)

Preoperative CT --> Postoperative CT 1 week and 1 month --> Follow up CT (about 6 months)

92 donors included (mean age, 27.2 ± 7.1 years)

- 58 males (mean age, 25.7 ± 6.6 years) and 34 females (mean age, 29.9 ± 7.3 years)
- Healthy volunteers with normal liver function
- Remnant liver volume (RLV) > 30%, graft-to-recipient body weight ratio > 0.8%

CT techniques

Preoperative CT scans

- Obtained with 16-row multidetector CT scanners (Somatom Sensation 16; Siemens Medical Solutions, Erlangen, Germany)
- Precontrast, hepatic arterial phase, venous phase
- The scanning and reconstitution parameters for venous phase scanning: detector collimation, 0.75 x 16 mm; table feed, 12 mm per gantry rotation; gantry rotation time, 0.5 seconds; 200 effective mAs; 120 kVp
- Reconstructed with section thickness and interval of 5 mm

Postoperative CT scans

- Venous phase with reduced radiation dose (100 effective mAs and 100 kVp)
- The scanning and reconstitution parameters: similar as those of preoperative CT

CT analysis: preoperative CT

- PV anatomic variations: classic group and non-classic group
LPV diameter (LPV_B): left PV diameter at the point less than 1 cm from bifurcation

Liver volume: total liver volume (TLV), base line remnant liver volume (RLV_B), \%RLV_B = RLV/TLV \cdot 100

Spleen volume: base line spleen volume (SV_B)

CT analysis: postoperative CT

- LPV diameter: %LPV_{1W-B} = 100 \cdot LPV_{1W}/LPV_B, %LPV_{1M-B} = 100 \cdot LPV_{1M}/LPV_B, %LPV_{1M-1W} = 100 \cdot LPV_{1M}/LPV_{1W}
- Liver volume: %RLV_{1W-B} = 100 \cdot RLV_{1W}/RLV_B, %RLV_{1M-B} = 100 \cdot RLV_{1M}/RLV_B, %RLV_{1M-1W} = 100 \cdot RLV_{1M}/RLV_{1W}
- Spleen volume: %SV_{1W-B} = 100 \cdot SV_{1W}/SV_B, %SV_{1M-B} = 100 \cdot SV_{1M}/SV_B, %SV_{1M-1W} = 100 \cdot SV_{1M}/SV_{1W}

Statistical analysis, follow-up

Box and whisker diagram

- The distributions of measurement data (LPV_B, LPV_{1W}, LPV_{1M}; RLV_B, RLV_{1W}, RLV_{1M}; SV_B, SV_{1W}, SV_{1M})

Unpaired T-test

- Evaluate if there was difference in the mean %LPV_{1W-B} between classic and non-classic groups

Univariate regression analyses

- Evaluate associations between %LPV_{1W-B} and %RLV_B, %RLV_{1W-B}, %RLV_{1M-B}, %RLV_{1M-1W}, %SV_{1W-B}, %SV_{1M-B}, or %SV_{1M-1W}

Follow-up

- 82 donors: approximately six months after the surgery
- LPV_{6M}, RLV_{6M}, SV_{6M}
Results

Pre-donation CT data in 92 live liver donors

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>25<sup>th</sup> percentile</th>
<th>75<sup>th</sup> percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV<sub>B</sub></td>
<td>11.7 ± 1.2</td>
<td>11.9</td>
<td>11.1</td>
<td>12.4</td>
</tr>
<tr>
<td>RLV<sub>B</sub></td>
<td>373.9 ± 68.8</td>
<td>370.0</td>
<td>322.5</td>
<td>401.0</td>
</tr>
<tr>
<td>%RLV<sub>B</sub></td>
<td>37.5 ± 3.1</td>
<td>37.2</td>
<td>35.1</td>
<td>40.0</td>
</tr>
<tr>
<td>SV<sub>B</sub></td>
<td>179.6 ± 60.7</td>
<td>164.2</td>
<td>140.5</td>
<td>217.8</td>
</tr>
</tbody>
</table>

Table 1

Post-donation CT data in 92 live liver donors on post 1 week and 1 month

<table>
<thead>
<tr>
<th></th>
<th>LPV<sub>1</sub><sub>W</sub></th>
<th>%LPV<sub>1</sub><sub>W-B</sub></th>
<th>LPV<sub>1</sub><sub>M</sub></th>
<th>%LPV<sub>1</sub><sub>M-1</sub><sub>W</sub></th>
<th>%LPV<sub>1</sub><sub>M-B</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>8.9 ± 1.1</td>
<td>76.9 ± 9.9</td>
<td>9.6 ± 1.4</td>
<td>108.1 ± 9.8</td>
<td>82.9 ± 11.8</td>
</tr>
<tr>
<td>Median</td>
<td>8.9</td>
<td>76.2</td>
<td>9.6</td>
<td>106.2</td>
<td>81.6</td>
</tr>
<tr>
<td>Range</td>
<td>5.3, 11.3</td>
<td>57.4, 98.9</td>
<td>5.3, 12.3</td>
<td>90.5, 138.1</td>
<td>60.7, 118.5</td>
</tr>
<tr>
<td>25<sup>th</sup> percentile</td>
<td>8.4</td>
<td>69.3</td>
<td>8.7</td>
<td>101.7</td>
<td>73.5</td>
</tr>
<tr>
<td>75<sup>th</sup> percentile</td>
<td>9.7</td>
<td>85.4</td>
<td>10.6</td>
<td>113.6</td>
<td>92.4</td>
</tr>
</tbody>
</table>

Table 2-1

PV anatomic variation (LPV₁_W, %LPV₁_{W-B})

- Classic group: 8.9 ± 1.0 mm (5.9-10.8) and 76.7 ± 9.7% (57.4-98.9)
- Non-classic group: 8.9 ± 1.8 mm (5.3-11.3) and 77.6 ± 12.5% (62.4-93.5)
- Student t-test: no significant differences in the mean LPV₁_W and %LPV₁_{W-B} between the two groups ($P = .918, .828$)

<table>
<thead>
<tr>
<th></th>
<th>RLV<sub>1</sub><sub>W</sub></th>
<th>%RLV<sub>1</sub><sub>W-B</sub></th>
<th>RLV<sub>1</sub><sub>M</sub></th>
<th>%RLV<sub>1</sub><sub>M-1</sub><sub>W</sub></th>
<th>%RLV<sub>1</sub><sub>M-B</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>707.2 ± 124.7</td>
<td>191.6 ± 31.4</td>
<td>828.3 ± 141.8</td>
<td>117.7 ± 10.8</td>
<td>224.8 ± 38.7</td>
</tr>
<tr>
<td>Median</td>
<td>709.8</td>
<td>190.3</td>
<td>842.2</td>
<td>117.1</td>
<td>222.9</td>
</tr>
<tr>
<td>Range</td>
<td>444.7, 1058.1</td>
<td>140.9, 310.9</td>
<td>535.1, 1267.1</td>
<td>99.4, 157.7</td>
<td>150.8, 412.0</td>
</tr>
<tr>
<td>25th percentile</td>
<td>619.1</td>
<td>166.7</td>
<td>710.3</td>
<td>710.3</td>
<td>197.1</td>
</tr>
<tr>
<td>75th percentile</td>
<td>771.2</td>
<td>209.9</td>
<td>908.4</td>
<td>908.4</td>
<td>246.4</td>
</tr>
</tbody>
</table>

Table 2-2

<table>
<thead>
<tr>
<th></th>
<th>SV<sub>1w</sub></th>
<th>%SV<sub>1W-B</sub></th>
<th>SV<sub>1M</sub></th>
<th>%SV<sub>1M-1W</sub></th>
<th>%SV<sub>1M-B</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>263.0 ± 83.0</td>
<td>148.3 ± 18.2</td>
<td>261.5 ± 88.8</td>
<td>99.3 ± 11.4</td>
<td>146.9 ± 23.0</td>
</tr>
<tr>
<td>Median</td>
<td>253.8</td>
<td>145.1</td>
<td>247.1</td>
<td>98.7</td>
<td>142.7</td>
</tr>
<tr>
<td>Range</td>
<td>118.8, 517.5</td>
<td>105.2, 188.4</td>
<td>114.4, 506.0</td>
<td>69.6, 135.1</td>
<td>102.0, 213.1</td>
</tr>
<tr>
<td>25th percentile</td>
<td>203.8</td>
<td>135.8</td>
<td>195.3</td>
<td>92.6</td>
<td>132.6</td>
</tr>
<tr>
<td>75th percentile</td>
<td>308.6</td>
<td>163.4</td>
<td>319.2</td>
<td>104.9</td>
<td>158.4</td>
</tr>
</tbody>
</table>

Table 2-3

Post-donation data and statistical results

- Postoperative SV changes [Fig. 1 on page 7](#)
- Postoperative LPV diameter changes [Fig. 2 on page 7](#)
- Linear correlation between %LPV_{1W-B} and %RLV_B [Fig. 3 on page 8](#)
- Linear correlation between %LPV_{1W-B} and %RLV_{1W-B} [Fig. 4 on page 9](#)
- Linear correlation between %LPV_{1W-B} and %SV_{1W-B} [Fig. 5 on page 10](#)
- Linear correlation between %LPV_{1W-B} and %SV_{1M-1W} [Fig. 6 on page 11](#)
- Linear correlation between %LPV_{1W-B} and %SV_{1M-B} [Fig. 7 on page 12](#)
- Linear correlation between %LPV_{1W-B} and %RLV_{1M-1W} [Fig. 8 on page 13](#)
- Linear correlation between %LPV_{1W-B} and %RLV_{1M-B} [Fig. 9 on page 14](#)
Fig. 1: Postoperative SV changes Box and whisker plot shows changes of spleen volume on postoperative one week (SV1W), one month (SV1M) and six months (SV6M) compared with baseline volume (SVB). The central boxes represent the values from the lower to the upper quartiles (25th to 75th percentile). The middle lines represent the medians. Vertical lines extend from the minimum to the maximum values, excluding outside and far out values, which are displayed as separate points. The values plotted with a square marker are outside values, smaller than the lower quartile minus 1.5 times the interquartile range or larger than the upper quartile plus 1.5 times the interquartile range (inner fences).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 2: Postoperative LPV changes Box and whisker plot shows changes of left portal vein diameter on postoperative one week (LPV1W), one month (LPV1M) and six months (LPV6M) compared with baseline diameter (LPVB). The central boxes represent the values from the lower to the upper quartiles (25th to 75th percentile). The middle lines represent the medians. Vertical lines extend from the minimum to the maximum values, excluding outside and far out values, which are displayed as separate points. The values plotted with a square marker are outside values, smaller than the lower quartile minus 1.5 times the interquartile range or larger than the upper quartile plus 1.5 times the interquartile range (inner fences).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 3: Linear correlation between %LPV1W-B and %RLVB Scatter plots shows linear correlation between %RLVB and %LPV1W-B (y = 0.799\times + 46.968; residual standard deviation, 9.645; P = .016).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 4: Linear correlation between %LPV1W-B and %RLV1W-B Scatter plots shows linear correlation between %RLV1W-B and %LPV1W-B ($y = -0.084 \times + 92.940$; residual standard deviation, 9.606; $P = .011$).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 5: Linear correlation between \%LPV_{1W-B} and \%SV_{1W-B} Scatter plots shows linear correlation between \%LPV_{1W-B} and \%SV_{1W-B} (y = -0.118 \times x + 157.380; residual standard deviation, 18.228; P = .543).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 6: Linear correlation between %LPV1W-B and %SV1M-1W Scatter plots shows liner correlation between %LPV1W-B and %SV1M-1W ($y = -0.338 \cdot x + 125.276$; residual standard deviation, 10.916; $P = .004$).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 7: Linear correlation between %LPV1W-B and %SV1M-B Scatter plots shows linear correlation between %LPV1W-B and %SV1M-B (y = -0.647•x + 196.698; residual standard deviation, 22.262; P = .007).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 8: Linear correlation between %LPV1W-B and %RLV1M-1W Scatter plots shows linear correlation between %LPV1W-B and %RLV1M-1W ($y = -0.097 \times x + 110.244$; residual standard deviation, 10.856; $P = .401$).

© Radiology, Asan Medical Center - Seoul/KR
Fig. 9: Linear correlation between %LPV1W-B and %RLV1M-B Scatter plots shows linear correlation between %LPV1W-B and %RLV1M-B ($y = -0.862 \times + 291.173$; residual standard deviation, 37.936; $P = .034$).

© Radiology, Asan Medical Center - Seoul/KR
Conclusions

Discussion

Fig. 10: This diagram summarizes associations between %LPV1W-B and the other CT parameters. %RLVB and %RLV1W-B were significantly associated with %LPV1W-B. Also, there were significant associations between %LPV1W-B and %SV1M-1W or %SV1M-B through univariate regression analyses.

References: Radiology, Asan Medical Center - Seoul/KR

Conclusion

- LPV diameter tends to decrease in varying degree in live liver donors shortly following right hemihepatectomy and mostly improves on follow-up spontaneously.
- %LPV1W-B may be one of indicators predicting further splenic enlargement.
Fig. 10: This diagram summarizes associations between %LPV1W-B and the other CT parameters. %RLVB and %RLV1W-B were significantly associated with %LPV1W-B. Also, there were significant associations between %LPV1W-B and %SV1M-1W or %SV1M-B through univariate regression analyses.

© Radiology, Asan Medical Center - Seoul/KR
References

Personal Information

Sanghyun Choi

Asan Medical Center, Department of Radiology, Seoul, Korea.

E-mail: samulboy@empal.com

Corresponding author:

Kyoung Won Kim

Asan Medical Center, Department of Radiology, Seoul, Korea.

E-mail: kimkw@amc.seoul.kr