Spectrum of Mucin-producing Neoplastic Conditions of the Abdomen and Pelvis: Evaluation with Cross-sectional Imaging

Poster No.: C-1790
Congress: ECR 2011
Type: Educational Exhibit
Keywords: Abdomen, Pelvis, CT, MR, Neoplasia
DOI: 10.1594/ecr2011/C-1790

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Learning objectives

Mucinous carcinoma is a histological subtype of tumors in which at least 50% of the tumor is composed of large pools of extracellular mucin and columns of malignant cells. Mucinous carcinoma is commonly seen in the stomach and colorectal region. Although less frequent than nonmucinous carcinoma, mucinous carcinoma is associated with a worse prognosis, because it is more frequently diagnosed in the advanced stage and is associated with more frequent local recurrence, serosal invasion, lymphatic and vascular invasion, lymph node metastasis, and distant metastasis. Therefore, distinguishing mucinous from nonmucinous carcinoma in the gastrointestinal tract is important (1, 2).

Signet ring cell carcinoma is composed of signet ring cells that have a vacuolated cytoplasm containing abundant intracellular mucin and a nucleus displaced to the periphery. It is a rare form of adenocarcinoma, and most tumors arise in the stomach. The prognosis for signet ring cell carcinoma is generally poor, although its prognosis is still controversial (3, 4).

Intraductal papillary mucinous neoplasm (IPMN) is an uncommon neoplasm arising from the bile duct and pancreas with characteristic histology and distinctive clinicobiological behavior. It is characterized by a proliferation of ductal epithelium associated with ductal dilatation and variable mucin production. Distinguishing IPMN from other tumors is essential because IPMN has a better prognosis than other malignancies in the pancreaticobiliary tree (5, 6).

Careful distinction of mucinous and nonmucinous tumors is important, as the clinical outcome of these entities may somewhat differ. Because abundant mucin within the tumor is the hallmark of mucinous neoplasms, mucin-producing neoplasms typically show some distinct imaging features. Therefore, familiarity with the critical imaging features of mucin-producing neoplasms in the abdomen and pelvis may facilitate an accurate diagnosis and treatment.

In this presentation, we classified mucin-producing neoplasms in the abdomen and pelvis into four types according to characteristic morphological features: (1) unilocular or multilocular cystic neoplasms lining mucin-secreting epithelium that contain mucinous fluid; (2) tumors characterized by intraluminal proliferation of mucinous neoplastic transformation of epithelium lining pancreaticobiliary ducts, which are arranged in a papillary pattern and typically produce and accumulate mucin; (3) tumors composed of neoplastic epithelium containing intracellular mucin associated with little or no extracellular mucin; and (4) tumors composed of abundant extracellular mucin due to mucin-secreting neoplastic epithelium (Fig. 1). On the basis of these four types, we discuss and illustrate the clinical significance and imaging features of mucin-producing neoplasms in the abdomen and pelvis.
Fig. 0: Figure 1. Four types of mucin-producing neoplasms in the abdomen and pelvis according to characteristic morphological features.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Background

Mucin is a high-molecular weight glycoprotein containing oligosaccharides attached to the mucin core protein, and is the major component of mucus lining the surface of glandular epithelium as a viscoelastic gel. Mucin is expressed by various epithelial mucosal cells, which exist in the respiratory, digestive, and urogenital tracts, and secretory epithelial surfaces of specialized organs. Mucin has a central role in maintaining homeostasis and promoting cell survival in a variety of conditions. Because the outermost area of a typical epithelial surface consists of secreted gel-forming mucin, mucin lubricates and forms a barrier that protects the mucosal epithelium from potentially noxious intraluminal substances such as air, food, enzymes, acidic pH, salt, bacteria, and viruses. Additionally, mucin gels capture and hold biologically active molecules that may incite inflammatory, repair, or healing processes following their release (7).

Cancer cells, especially adenocarcinomas, express aberrant forms or amounts of mucins that arise as a consequence of the deregulation of mucin core protein expression. Mucins in cancer cells contribute to carcinogenesis and tumor invasion by simultaneously disrupting existing interactions and establishing new ones (7). These tumors produce variable amounts of intracellular and/or extracellular mucins. Adenocarcinomas with abundant intracellular mucin production are referred to as signet ring cell carcinomas, and adenocarcinomas with abundant extracellular mucin deposits are referred to as mucinous carcinomas. Some tumors appear as well-defined cystic masses lining mucin-secreting epithelium and containing mucinous fluid. Mucin accumulates particularly within the pancreaticobiliary ducts by intraluminal proliferation of mucinous neoplastic epithelium.

Mucus is composed of 95% water and 5% high-molecular-weight glycoprotein. Due to its high water content, mucin usually appears anechoic on ultrasonography (US), and has computed tomography (CT) attenuation and magnetic resonance (MR) signal intensity similar to those of water. However, the imaging appearance of mucin varies depending on water and protein concentrations. Concentrated mucin increases US echogenicity, which may appear hypoechoic with fine internal echoes or in a complex echogenic pattern. Concentrated mucin also has CT attenuation values above that of water, as well as high signal intensity on T1-weighted images and low signal intensity on T2-weighted images due to shortening of both the T1 and T2 relaxation times. Knowledge of characteristic mucin imaging features is helpful to diagnose variable mucin-producing neoplastic conditions and to avoid pitfalls.
Well-circumscribed cystic neoplasms lining mucin-secreting epithelium and containing mucinous fluid

Well-circumscribed cystic neoplasms lining mucin-secreting epithelium and containing mucinous fluid are often seen in the biliary tract, pancreas, and ovary. Biliary cystadenomas and cystadenocarcinomas, as well as mucinous cystic neoplasms of the pancreas are very similar to mucinous cystic neoplasms arising in the ovary. Columnar epithelium with a dense cellular ovarian-like stroma is frequently seen in these hepatobiliary tumors. However, their histogenesis is poorly understood.

(1) Mucinous Cystic Neoplasm of the Pancreas

A mucinous cystic neoplasm (MCN) is lined by mucin-producing columnar epithelium. This tumor is characterized by an ovarian-like stromal component, which is essential for diagnosing MCN of the pancreas. MCN of the pancreas shares both clinical and pathological characteristics with biliary and ovarian mucinous tumors. MCN occurs predominantly in middle-aged women, typically in the body or tail of the pancreas. Although a spectrum of MCNs from benign (mucinous cystadenoma) to malignant (mucinous cystadenocarcinoma) occurs, MCNs should always be resected because they are all potentially malignant (8).

On cross-sectional imaging such as US, CT, or MR, a MCN appears as a well-capsulated, unilocular, or multilocular septated cystic lesion (Figs. 2, 3). The tumor is round to oval with a smooth external margin, and the wall of the cyst is typically thick with delayed enhancement. Observing cyst morphology may help distinguish this tumor from other pancreatic cystic neoplasms. MCN commonly manifests as a unilocular or mildly septated macrocystic lesion, whereas a serous cystadenoma appears as a cluster of small cysts within the pancreas, and a branch duct type intraductal papillary mucinous neoplasm of the pancreas (IPMN-P) appears as a septated cystic lesion that communicates with the main pancreatic duct. Peripheral calcification is seen in 10-25% of cases and is an important characteristic of MCN that can be used to distinguish it from serous cystadenoma, which tends to have central calcification. MCN generally does not communicate with the pancreatic duct, unlike an IPMN-P. When rarely present, such a communication is due to fistula formation between the MCN and the pancreatic duct. Different attenuations or signal intensities may be noted within the cystic cavity, depending on whether mucoid or hemorrhagic fluid is present. The presence of an internal enhancing soft tissue component is indicative of mucinous cystadenocarcinoma (Fig. 3) (8).
Biliary cystadenomas and cystadenocarcinomas are rare tumors arising in the bile duct epithelium as multilocular cystic masses containing carcinoembryonic antigen-rich mucinous fluid. They are generally intrahepatic (85%) and occur more frequently in middle-aged women. These tumors are similar to mucinous cystic tumors that arise in the pancreas and ovary and are further subdivided into those with ovarian stroma and those without ovarian stroma. The presence of ovarian stroma may be a favorable prognostic sign. However, gross or imaging features cannot distinguish tumors with ovarian stroma from those without ovarian stroma (9).

CT appearance of a biliary cystadenoma and cystadenocarcinoma includes a solitary cystic mass with a well-defined thick fibrous capsule, mural nodules, internal septa, and rarely capsular calcification. These appear as a multilocular cystic mass with variable signal intensities on both T1- and T2-weighted images depending on the presence of mucin, hemorrhage content, or solid components (Fig. 4). Internal nodularity and septation have been associated with a biliary cystadenocarcinoma, whereas septation without nodularity is associated with a biliary cystadenoma. However, these findings overlap between benign and malignant forms. Because both a biliary cystadenoma and cystadenocarcinoma are treated with total surgical excision, distinguishing these two diseases may be of little practical importance (9).

Biliary cystadenomas and cystadenocarcinomas morphologically resemble a cystic variant of an intrahepatic intraductal papillary neoplasm of the bile duct (IPN-B). Distinguishing these two diseases may be possible on images in which the cystic IPN-B is communicating with the intrahepatic bile ducts and the downstream bile duct is dilated due to excessive mucin, whereas biliary cystadenomas and cystadenocarcinomas do not communicate with the bile duct, and mucin is confined to the cystic mass.

(3) Mucinous Cystic Neoplasm of the Ovary

Mucinous cystic tumors of the ovary are the second most common type of ovarian epithelial tumor. They can be classified as adenomas, borderline malignancies, or adenocarcinomas, according to the histopathological degree of malignancy. A mucinous cystadenoma is composed of a single layer of columnar cells with abundant intracellular mucin and small basilar nuclei in the cysts. A mucinous borderline tumor is a noninvasive epithelial tumor characterized by cytologic atypia without stromal invasion. A mucinous cystadenocarcinoma has an irregular glandular structure and papillae with obvious stromal invasion.
On MR imaging, a mucinous cystic tumor typically appears as a large multilocular cystic mass. The loculi show variable signal intensity on both T1- and T2-weighted images (so-called "stained glass" appearance), depending on the viscosity of the materials present, such as mucin, blood products, or debris (Figs. 5-7). A unilocular cystic appearance is rare for mucinous cystic tumors. A solid component, thick septa, and a thick and irregular wall are suggestive of a malignant epithelial ovarian tumor (Fig. 7) (10).

A primary intestinal mucinous carcinoma, most commonly from the appendix or colon, can metastasize to the ovary. Metastases to ovary are much more common than an ovarian cystadenocarcioma. A metastatic carcinoma is often bilateral, whereas a mucinous cystadenocarcioma is usually unilateral. However, mucinous cystadenocarcinomas mimic metastases to the ovary from a primary mucinous carcinoma on MR imaging (10).

The gross and radiological appearances of mucinous borderline tumors usually do not reliably distinguish them from cystadenomas or even some cystadenocarcinomas. The most frequent MR feature of mucinous borderline tumors is a predominantly cystic lesion with varying cyst and septal wall thickness. Mucinous borderline tumors and cystadenocarcinomas tend to have greater numbers of loculi on MR imaging than cystadenomas, which be explained by more active mitosis in mucinous borderline tumors and cystadenocarcinomas, resulting in production of larger numbers of glands and loculi (Figs. 6, 7). Both mucinous cystadenocarcinomas and borderline tumors show a solid portion on MR imaging, which is pathologically composed of densely aggregated fine numerous loculi or diffuse tumor cell proliferation. However, the solid portion of a mucinous cystadenocarcinoma is larger and more commonly seen than in a borderline tumor. Pelvic organ invasion, implants, and lymphadenopathy may be helpful ancillary findings suggestive of malignancy (11).

(4) Mucocele of the Appendix

Mucocele is a descriptive term for a mucinous distension of the appendiceal lumen, regardless of the underlying pathology. A mucocele is quite rare, with a prevalence of 0.2-0.3% among appendectomies and 8% of all appendiceal tumors. A mucocele can be caused by a variety of nonneoplastic, benign neoplastic, and malignant conditions. However, most mucoceles are associated with neoplastic epithelium. A mucinous cystadenoma is the most common type, representing 63-84% of mucoceles. A mucinous cystadenoma is based on villous adenomatous changes in the mucin-rich epithelium, which produce marked intraluminal dilatation by mucin reaching up to 6 cm. An appendiceal perforation occurs in up to 20% of cases, with mucinous spillage into the periappendiceal area or onto the serosal surface, which leads to pseudomyxoma peritonei (PMP) and a possibly fatal outcome. A mucinous cystadenocarcinoma is less
common than a cystadenoma, accounting for 11-20% of cases. The presence of stromal invasion by neoplastic cells is indicative of an adenocarcinoma (12).

Imaging plays an important role when evaluating appendiceal mucocele. US usually reveals a unilocular, ovoid, anechoic mass in the region of the appendix. Internal echogenecity varies depending on the acoustic interfaces produced by the mucin, including hypoechogenic masses with fine internal echoes and complex echogenic masses with acoustic enhancement. Concentric and echogenic layers within the cystic mass (so-called the onion skin sign), are specific for mucocele of the appendix (Fig. 8). The reason for the layered appearance on US is unclear. Nevertheless, it may be explained by a fluctuation in mucin secretion into the cavity along with the gradual absorption of water or by a fluctuation in the degree of excretion blockage from the cavity (12).

CT is the imaging modality of choice because CT depicts tissue characteristics, the anatomical relationship between the cystic mass and cecum, and helps rule out or confirm the diagnosis. On CT, a mucocele appears as a round or tubular cystic mass with thin and enhancing walls, which is contiguous with the base of the cecum. Curvilinear mural calcification is sometimes seen in less than 50% of cases, which is suggestive of a mucocele.

A mucocele is hyperintense on T2-weighted images and variably hypointense or isointense on T1-weighted images, depending on the mucin concentration (Fig. 5). The presence of enhancing nodular lesions raises the possibility of a mucinous cystadenocarcinoma (Fig. 9). Identifying a normal right ovary in women is also crucial to exclude a cystic ovarian neoplasm or tubo-ovarian abscess.

Because mucoceles usually present as a chronic noninfectious process, most are relatively asymptomatic. However, their presenting symptoms sometimes mimic acute appendicitis. The differential diagnosis of a mucocele with secondary appendicitis and appendicitis without a mucocele is important because surgical management may be altered according to the presence or absence of mucocele. A laparoscopic approach is contraindicated because a ruptured mucocele can lead to PMP. Furthermore, an extensive surgical resection such as a right hemicolecctomy may be performed in cases of mucinous cystadenocarcinomas. CT features such as cystic dilatation of the appendix, a luminal diameter greater than 1.5 cm, and mural calcification suggest a mucocele coexisting with acute appendicitis, although there is some overlap with the diagnosis of acute appendicitis without a mucocele.

The treatment of choice is surgical excision, and a full abdominal exploration is advised during surgery, because a mucocele can be associated with other tumors, particularly colonic adenocarcinoma and ovarian tumors (12).
Some biliary and pancreatic neoplasms are characterized by intraductal proliferation of mucinous neoplastic transformation of epithelium lining pancreaticobiliary ducts, which are arranged in a papillary pattern and typically produce and accumulate mucin. Neoplasms of the biliary tract and pancreas have similar pathological features, and IPMN-P and a papillary neoplasm of the bile duct are very similar. Therefore, a papillary neoplasm of the bile duct is now recognized as a counterpart of IPMN-P (6, 13).

(1) Intraductal Papillary Mucinous Neoplasm of the Pancreas

IPMN-P, known as one of the mucin-producing pancreatic tumors, is an uncommon pancreatic neoplasm with characteristic histology and distinctive clinicobiological behavior. It is characterized by an intraductal proliferation of mucinous cells arranged in a papillary pattern. Excessive mucin secretion in the ducts by this proliferation ultimately leads to cystic dilatation of the major duct (main duct type), the second duct (branch duct type), or both (combined duct type), depending on the tumor location. Abundant mucin production is usually observed in most cases of IPMN-P. The clinical symptoms and signs of IPMN-P are due to impaired outflow of pancreatic juice, which is induced by the hypersecretion of mucin. IPMN-P occurs most frequently in men, and the mean age at the time of diagnosis is approximately 60 years. It is most commonly located in the head or uncinate process of the pancreas. IPMN-P has a low potential for malignancy, and it has a better prognosis than other pancreatic malignancies because of slow growth rates, rare parenchymal invasion, low rates of metastatic spread, and low recurrence after resection (5).

Characteristic ERCP findings of IPMN-P include communication between a cystic lesion in the branch duct and the main pancreatic duct, intraluminal filling defects of the pancreatic duct due to the presence of mucin or a mass, and the depiction of a patulous papilla with mucin extrusion from the orifice of the papilla.

CT or MR findings of IPMN-P include grapelike clustered cystic lesions reflecting focal dilatation of the branch ducts, diffuse dilatation of the main pancreatic duct, mural nodules, bulging papilla, and communication of branch duct-type IPMN with the main pancreatic duct. Although the diagnosis of malignancy in IPMN is often difficult, even with recent advanced MR techniques, several indirect findings can suggest the presence of malignancy, including the presence of mural nodules, thick septa, septal calcification, and a main pancreatic duct dilated greater than 10 mm in diameter (Fig. 10) (5).

(2) Papillary Neoplasm of the Bile Duct
A papillary neoplasm of the bile duct is an intraductal tumor with numerous minute frondlike papillary projections. In approximately one-third of cases, tumors produce abundant viscous mucin, resulting in intermittent and incomplete obstruction of the segmental or lobar bile ducts or the entire biliary tree. IPN-B arises from the mucosa and slowly spreads along its luminal surface. Only in the late stage does it invade the bile duct, and thus prognosis is relatively favorable (6).

Although both biliary intraepithelial neoplasia (BilIN) and IPN-B are precursors of intrahepatic cholangiocarcinoma, BilIN and IPN-B have different pathological characteristics. IPN-B is macroscopically visible and characterized by prominent intraductal papillary proliferation with distinct fibrovascular cores that progresses to either mucinous or tubular adenocarcinoma. It has previously been described as a biliary papillomatosis, intraductal growing cholangiocarcinoma, IPMN of the bile duct, or mucin hypersecreting bile duct tumor. In contrast, BilIN manifests microscopically as a flat or micropapillary growth of atypical biliary epithelium and progresses only to a tubular adenocarcinoma. Considering the shared biliary tract and pancreatic origin, the two systems may have similar pathological features. Thus, IPN-B is the biliary counterpart of IPMN-P. In both organs, these neoplasms arise within the duct system and show a predominantly intraductal growth pattern, commonly an overproduction of mucin, and an association with invasive adenocarcinoma (13).

Based on the gross appearance of the intraductal tumors, IPN-B may be classified as an intraductal polypoid tumor, a cast-like growing tumor, a mucosal spreading growth, a cystic variant, or a floating tumor. Thus, variable imaging appearances of IPN-B include an intraductal polypoid mass within a localized ductal dilatation, diffuse and marked ductectasia with visibly enhanced papillary mass or masses, intraductal cast-like lesions within a mildly dilated duct, diffuse and marked ductectasia without a visible mass, or a floating tumor. The friable part of the papillary tumor may slough off and be seen in imaging as a floating tumor within the bile duct, which can be radiologically confused with a bile duct stone (6, 13).

CT and MR images may fail to detect mucin itself because the attenuation or signal intensity of mucin is usually similar to that of bile. A large amount of mucin can be suggested by indirect CT and MR findings, including disproportionate and severe dilatation of the bile ducts proximal or even distal to the tumor, hepatic parenchymal atrophy in the affected lobe or segments, and bulging of the papilla (Fig. 11). This usually occurs in IPN-B with mucosal spreading growth without forming tangible masses, and can be explained from the production of excessive amounts of mucin and a longstanding increased ductal pressure on the adjacent hepatic parenchyma due to the partial obstruction (13).

Moreover, in our experience, mucin appears as an elongated and amorphous filling defect within an enhanced bile duct on gadobenate dimeglumine-enhanced or gadoxetic
acid-enhanced MR imaging, similar to that of direct cholangiographic findings (Fig. 11). The filling defect due to mucin could be confused with other intraluminal filling defects, such as a stone, blood clot, or mass. T2-weighted images can be helpful to distinguish hyperintense mucin from other intraluminal filling defects, which usually appear as a signal void, hypointense or isointense.

(3) Papillary Neoplasm of the Gallbladder

Mucin-producing carcinoma of the gallbladder is rare, and occurs mostly in older women. Mucin-producing carcinoma of the gallbladder histologically includes two different types: well-differentiated papillary adenocarcinoma and mucinous carcinoma. Well-differentiated adenocarcinoma (particularly papillary adenocarcinoma) usually presents as a papillary growth pattern and can produce mucin in the gallbladder lumen. A well-differentiated papillary adenocarcinoma is potentially less invasive due to its tendency toward intraluminal growth. At cross-sectional imaging, it appears as a papillary protrusion in an enlarged gallbladder (14).

Tumors composed of neoplastic epithelium containing intracellular mucin associated with little or no extracellular mucin

Signet ring cell carcinoma is characterized by large intracytoplasmic mucin vacuoles that expand in the malignant cells and push the nucleus to the periphery, creating a “signet ring” configuration. When ≥50% of the tumor is composed of cells of this type, it is classified as a signet ring cell carcinoma. More than 96% of all signet ring cell carcinomas arise in the stomach, with the rest arising in other primary organs including the rectum, colon, gallbladder, pancreas, bladder, and breast.

(1) Signet Ring Cell Carcinoma of the Gastrointestinal Tract

Signet-ring cell carcinomas usually produce minimal mucosal alterations in the gastrointestinal tract, but signet ring cells diffusely infiltrate throughout the bowel wall and often incite a marked desmoplastic reaction in the submucosa and muscularis propria, which produces the classic pathological features of primary scirrhous carcinoma (3, 4).

Gastric signet ring cell carcinoma accounts for 5-15% of all gastric cancers, and occurs at a higher frequency in females and young patients. The prognosis of gastric signet ring cell carcinoma remains controversial. However, signet ring cell histology is generally considered a poor prognostic factor in gastric carcinoma. It usually manifests
as a scirrhous tumor of the stomach that leads to obliteration of gastric folds and diffuse thickening of the gastric wall, which is known as the linitis plastica type.

Hyperenhancement of the involved stomach wall compared with liver attenuation on portal venous phases of contrast-enhanced CT and a predominantly thickened layer of the gastric wall are more commonly found in gastric signet ring cell carcinoma than in nonsignet ring cell carcinoma (Fig. 12). Hyperenhancement of the gastric lesion may correspond to intermingled loose and immature fibrosis or neovascularized signet ring cells (3).

Colorectal signet ring cell carcinoma is rare, ranging from 0.1 to 2.4% of all colorectal carcinomas. Most are localized exclusively in the rectum. This carcinoma commonly occurs in younger patients and also has a high rate of spread to the lymph nodes, ovaries, or peritoneal surface. Distant hematogenous metastasis to the liver or lung is uncommon. The most common and characteristic CT features of this tumor are a long segment of concentric wall thickening and a target appearance (Fig. 13) (4).

Imaging findings of signet ring cell carcinoma are similar to those of metastatic linitis plastica, originating from a primary tumor, such as breast, gastric, or bladder cancers, and seen in the rectum or other parts of the colon. Metastatic linitis plastica appears as a malignant target sign consisting of thickened inner (mucosa and submucosa) and outer (serosa) layers and a relatively thin hypoattenuated middle layer (muscularis propria), or bowel wall thickening with homogeneous attenuation. In contrast, a benign target sign can be caused by submucosal edema, inflammatory infiltration, or hemorrhage and thus appears as a prominent hypoattenuating middle layer (submucosa) and thin hyperattenuating inner (mucosa) and outer layer (muscularis propria and serosa).

Tumors composed of abundant extracellular mucin due to mucin-secreting neoplastic epithelium

Adenocarcinomas in various organs produce and secrete extracellular mucin. This extracellular mucinous material may be so copious that the malignant cells appear to float within a gelatinous pool, in which case it is called a mucinous carcinoma. Mucinous carcinoma is diagnosed when extracellular mucin within the tumor is retained by more than 50% of the cells. Mucinous carcinoma is often observed in the gastrointestinal tract.

1) Mucinous Adenocarcinoma of the Gastrointestinal Tract

Mucinous carcinoma of the gastrointestinal tract is a rare subtype of adenocarcinoma. A mucinous carcinoma usually occurs in the stomach and colorectum. Mucinous carcinomas in the stomach and colorectum have worse prognosis than nonmucinous
carcinomas, because they are more frequently diagnosed in the advanced stage and are associated with deeper cancer depth, higher incidence of lymph node metastasis, lymphatic and venous permeation, and peritoneal dissemination (1, 2).

Gastric mucinous carcinoma represents approximately 3% of all gastric cancers and has a poor prognosis. Most gastric carcinomas are detected by endoscopy combined with biopsy. However, it is often difficult to diagnose mucinous carcinoma by biopsy because most mucinous gastric carcinomas are located predominantly in the submucosa and the frequency of mucosal involvement is somewhat low. Therefore, an accurate preoperative diagnosis of mucinous carcinomas in the gastrointestinal tract by CT or MR is important.

The most common CT appearance for a gastric mucinous carcinoma is a diffuse wall thickening greater than 1 cm with preserved layering enhancement (**Fig. 14**). A thickened hypoattenuating middle or outer layer corresponds to abundant mucin pools located in the submucosa or deeper layers, and the thin enhancing inner layer corresponds to the overlying normal mucosal layer with or without the exception of focal cancer infiltration. Miliary and punctate calcifications within the mucin pool are present and are thought to be diagnostic for mucinous adenocarcinoma. The mechanism of calcification is believed to be related to alkaline mucin, which predisposes calcium salts to precipitate (1).

Colorectal mucinous carcinoma varies from 5 to 15% of all colorectal carcinoma. Mucinous carcinoma most frequently occurs in the rectosigmoid or ascending colon. As mentioned earlier, mucinous carcinomas are often detected at an advanced stage and are less resectable. The prognostic significance of mucinous carcinoma is controversial.

CT features indicating mucinous-type colorectal cancer include marked eccentric bowel wall thickening greater than 2 cm, heterogeneous contrast enhancement of the tumor with poor enhancement of the solid portion, a large area of hypoattenuation, and intramural calcification (**Fig. 15**) (2).

On MR imaging, a colorectal mucinous carcinoma appears with very high signal intensity on T2-weighted images as a manifestation of the presence of extracellular mucin (**Fig. 16**). Intratumoral congestion, abscess, necrosis, and mural edema or entrapped fluids also appear with high signal intensity on T2-weighted images. A mucin tumor can be distinguished from a mimic because the tumor mucin pool may be enhanced, whereas others are not enhanced. The contrast-enhancement pattern can be a peripheral, heterogeneous, or lacelike enhancement, corresponding to the enhancing mesh-like internal structure formed by the cells, cord, and vessels that line the pools of extracellular mucin.

(2) Perianal Mucinous Adenocarcinoma
A perianal mucinous adenocarcinoma is a rare clinical condition that represents approximately 3 to 11% of all perianal carcinomas. Although their etiology is debatable, mucinous adenocarcinomas may originate from chronic anal fistulas, abscesses, anal glands, or intestinal duplications. This carcinoma is usually diagnosed at an advanced stage and the overall prognosis is poor.

CT findings suggesting a perianal mucinous adenocarcinoma include a multilocular cystic mass with peripheral calcification around the anus. It is well established that MR imaging plays an important role when evaluating a perianal mucinous carcinoma associated fistula in ano. MR features indicating a perianal mucinous adenocarcinoma include masses filled with markedly hyperintense content on T2-weighted images, enhancing solid components, mesh-like internal enhancement, a fistula between the mass and the anus, contrast enhancement of peripheral structures or peritumoral areas, and regional areas of lymph node enlargement. A solid enhancing component and mesh-like enhancement can be a clue to distinguish mucinous adenocarcinomas from abscesses associated with a fistula in ano (Fig. 17) (15).

(3) Urachal Mucinous Carcinoma

Urachal carcinoma is a rare neoplasm arising from the urachal remnant. Although a normal urachus is commonly lined by transitional epithelium, most urachal cancer is adenocarcinoma (90%), which is caused by metaplasia of the urachal mucosa into columnar epithelium followed by a malignant transformation. Approximately 70% of urachal carcinomas are mucinous adenocarcinomas, which contain variable amounts of extracellular mucin. Although the prognosis for urachal carcinoma is slightly better than that of nonurachal carcinoma, its prognosis is generally poor because this tumor arises in a clinically silent anatomical location and is generally discovered only after local invasion or metastatic disease.

A characteristic CT feature of urachal carcinoma is a midline supravesical solid and partly cystic mass due to mucin produced by the tumors (Fig. 18). Psammomatous calcification may occur in 50-70% of cases. Extension of a urachal carcinoma along the Retzius space helps distinguish it from other vesical carcinomas. T2-weighted image is helpful for detecting the area of the mucin pool within the tumor (16).

(4) Adenoma Malignum

Adenoma malignum, also known as a minimal deviation adenocarcinoma, is a rare subtype of mucinous adenocarcinoma, representing about 3% of all cervical adenocarcinomas. Adenoma malignum is often associated with Peutz-Jeghers syndrome and mucinous tumors of the ovary. Despite the presence of well-differentiated
histopathological features, the prognosis is unfavorable because of early dissemination into the peritoneal cavity and early distant metastasis.

On MR imaging, adenoma malignum is characterized by a multicystic lesion, demonstrating very high-signal intensity on T2-weighted images, with some solid enhancing components in the deep cervical stroma (Fig. 19). However, these MR findings are often confused with those of some other pseudoneoplastic lesions such as deep nabothian cysts, florid endocervical hyperplasia, or papillary endocervicitis, because some portions of these pseudoneoplastic cervical lesions are thickened or accompanied by solid components with enhancement, reflecting the inflammatory process in the cervix stroma or congestion of the small vessels (17).

(5) Mucinous Carcinoma of the Gallbladder

Mucinous carcinoma of the gallbladder has a massive mucous pool within the carcinoma tissue, tends to grow invasively, and is associated with a poor prognosis. A mucinous carcinoma appears as a focal multilocular hypodense lesion with rim-like enhancement on contrast-enhanced CT (Fig. 20). A hyperechoic mass on US and a near-water density on non-enhanced CT pathologically reflect a tumor containing a massive mucin pool with fibrous septa. Calcification within the tumor is often seen. Movable spotty and hyperechoic debris on US or movable filling defects on cholangiography inside the gallbladder lumen or biliary tree, which reflect hypersecretion of mucin, are helpful for diagnosing a mucin-producing carcinoma of the gallbladder. Dilatation of the cystic duct, intrahepatic ducts, or common bile duct is sometimes seen (14).

(6) Mucinous Type of Cholangiocarcinoma

Mucinous carcinoma is the rarest histological type of cholangiocarcinoma. Mucinous carcinoma appears as extremely hypodense mass with marginal or septal enhancement on contrast-enhanced CT, and as extremely hypointense and hyperintense mass on T1- and T2-weighted images, respectively. Its radiological characteristics reflect large mucinous lakes throughout the tumor without mucin excretion into the bile duct (13).

Pseudomyxoma Peritonei

PMP is an uncommon clinical condition characterized by accumulation of copious gelatinous materials throughout the peritoneal cavity. It is found in one of 5000 laparotomies, and occurs more commonly in women than men. PMP occurs when these mucin-producing lesions rupture into the peritoneal cavity. PMP due to rupture of an appendiceal mucocele is the most common. Mucinous tumors arising from the ovary,
gastrointestinal tract, pancreas, and urachus may also cause PMP. However, its origin may not be clear due to extensive organ involvement. Coexistence of mucinous tumors of the appendix and ovary are frequently observed in most women with PMP (Fig. 5). Although its relationship to other tumors continues to be controversial, ovarian tumors may represent a secondary deposit from appendiceal tumors.

Although most pseudomyxomas are in the peritoneal cavity, they may occur in the retroperitoneum. Pseudomyxoma retroperitonei is caused by rupture of a retrocecal appendiceal mucocele into the retroperitoneal space and fixation of the lesion to the posterior abdominal wall (18).

PMP may be classified into three clinicopathological categories: disseminated peritoneal adenomucinosis (DPAM), peritoneal mucinous carcinomatosis (PMCA), and PMCA with features intermediate between DPAM and PMCA or with discordant features. DPAM is characterized by peritoneal lesions composed of abundant extracellular mucin containing scant mucinous epithelium with little cytologic atypia or mitotic activity, whereas PMCA is characterized by peritoneal lesions composed of more abundant mucinous epithelium with the architectural and cytologic features of carcinoma. Because DPAM is histologically benign, its prognosis is better than that of PMCA (18).

On CT, PMP appears as ascites with attenuation slightly higher than water. It initially accumulates at sites of relative stasis such as the pouch of the Douglas/rectovesical pouch, the right and left subphrenic space, or the surface of the liver and spleen. Septa, curvilinear or amorphous calcification, areas of soft-tissue attenuation due to solid elements within mucinous material or compressed mesentery are seen more commonly within PMP as the volume of disease increases. Scalloping of the visceral surface, particularly the liver, is the diagnostic feature that distinguishes mucinous from simple ascites (Figs. 5, 9, 18). Although CT findings of DPAM and PMCA overlap considerably, PMCA tends to be more frequently accompanied by coexistent pleural masses or effusion, lymphadenopathy, and diffuse peritoneal infiltration such as omental cakes (Fig. 18) (18).
Fig. 0: Figure 2. Mucinous cystadenoma of the pancreas in a 40-year-old woman. (a) Contrast-enhanced CT shows a well-circumscribed multiloculated mass in the tail of the pancreas with enhancement of thin internal septa and the peripheral wall. Note a highly attenuated locule (arrow) within the cystic tumor.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 2. Mucinous cystadenoma of the pancreas in a 40-year-old woman. (b) EUS shows a complex multiloculated cystic mass in the pancreatic tail.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 3. Mucinous cystadenocarcinoma of the pancreas in a 44-year-old woman. (a, b) Non-enhanced (a) and contrast-enhanced (b) CT images show a well-circumscribed multi-septated cystic mass with enhancing soft-tissue components (arrowheads) in the pancreatic tail.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 3. Mucinous cystadenocarcinoma of the pancreas in a 44-year-old woman. (a, b) Non-enhanced (a) and contrast-enhanced (b) CT images show a well-circumscribed multi-septated cystic mass with enhancing soft-tissue components (arrowheads) in the pancreatic tail.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 3. Mucinous cystadeno-carcinoma of the pancreas in a 44-year-old woman. (c) T2-weighted image shows a large multilocular cystic mass with high signal intensity and peripheral soft tissue components with low signal intensity (arrowheads) in the pancreatic tail.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 4. Biliary cystadenoma in the liver of a 55-year-old woman. (a) US shows a multiseptated cystic mass in the liver.
Fig. 0: Figure 4. Biliary cystadenoma in the liver of a 55-year-old woman. (b) Contrast-enhanced CT shows a well-circumscribed cystic liver mass, which has similar attenuation to that of hepatic cysts. Note internal septa with nodular thickening (arrowhead).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 4. Biliary cystadenoma in the liver of a 55-year-old woman. (c, d) T1- (c) and T2-weighted (d) images show a multiseptated cystic mass with hyperintensity.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 4. Biliary cystadenoma in the liver of a 55-year-old woman. (c, d) T1- (c) and T2-weighted (d) images show a multiseptated cystic mass with hyperintensity.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 5. Coexistence of a mucinous cystadenoma of the appendix and ovary in a 63-year-old woman. (a) Coronal T2-weighted image shows a well-defined cystic mass with hyperintensity in the appendix (arrow) and a multiloculated cystic mass in the left ovary (*).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 5. Coexistence of a mucinous cystadenoma of the appendix and ovary in a 63-year-old woman. (b, c) Contrast-enhanced CT images show low-attenuation mucinous deposits in the peritoneal cavity and scalloping of the liver margin (arrowheads).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 5. Coexistence of a mucinous cystadenoma of the appendix and ovary in a 63-year-old woman. (b, c) Contrast-enhanced CT images show low-attenuation mucinous deposits in the peritoneal cavity and scalloping of the liver margin (arrowheads).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 6. Mucinous borderline tumor of the right ovary in a 41-year-old woman. (a, b) T1- (a) and T2-weighted (b) images show a cystic mass with large numbers of loculi with varying signal intensity in the right ovary.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 6. Mucinous borderline tumor of the right ovary in a 41-year-old woman. (a, b) T1- (a) and T2-weighted (b) images show a cystic mass with large numbers of loculi with varying signal intensity in the right ovary.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 6. Mucinous borderline tumor of the right ovary in a 41-year-old woman. (c) Contrast-enhanced fat-saturated T1-weighted image shows the enhancement of multiple internal septa and wall in the cystic mass

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 7. Mucinous cystadenocarcinoma of the left ovary in a 47-year-old woman.
(a) Sagittal T2-weighted image shows a huge multilocular ovarian cystic mass with multiple hypointense solid components (arrowheads).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 7. Mucinous cystadenocarcinoma of the left ovary in a 47-year-old woman. (b) Sagittal contrast-enhanced T1-weighted image shows an ovarian cystic mass with enhancement of internal septa and solid components (arrowheads).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 8. Mucocele of the appendix in a 54-year-old man. US shows an anechoic round mass in the appendix with echogenic layers (arrowhead) (so-called the onion-skin sign).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 9. Mucinous cystadenocarcinoma of the appendix in a 26 year-old man.
(a) Contrast-enhanced CT shows a complex hypoattenuating mass with enhancing solid portions and punctate calcifications in the appendix (arrow).

© Radiology, Pusan National University, Pusan National University Hospital - Pusan/KR
Fig. 0: Figure 9. Mucinous cystadenocarcinoma of the appendix in a 26 year-old man. (b) Contrast-enhanced CT of the upper abdomen shows loculations of fluid scalloping on the liver surface (arrowheads), providing evidence of a mass effect.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 10. Intraductal papillary mucinous neoplasm of the pancreas in an 80-year-old man. (a) Coronal T2-weighted RARE image shows cord-like hypointense mucin in the dilated main pancreatic duct (arrow). Note multiple stones in the dilated common bile duct.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 10. Intraductal papillary mucinous neoplasm of the pancreas in an 80-year-old man. (b) Axial contrast-enhanced fat-saturated T1-weighted image demonstrates a fistula (*) between the dilated main pancreatic duct and the stomach. Note mural nodules (arrowheads) within the dilated main pancreatic duct, which strongly suggest a malignant IPMN.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 10. Intraductal papillary mucinous neoplasm of the pancreas in an 80-year-old man. (c) Endoscopy reveals mucin leaking from the papilla with a patulous orifice.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 11. Intraductal papillary mucinous neoplasm of the bile duct in a 58-year-old woman. (a) Contrast-enhanced CT shows severe dilatation of the left intrahepatic ducts without visible intraductal mass. Note a small stone in the dilated intrahepatic duct (arrowhead).
Fig. 0: Figure 11. Intraductal papillary mucinous neoplasm of the bile duct in a 58-year-old woman. (b) Coronal T2-weighted RARE image shows dilatation of the intrahepatic and extrahepatic ducts. Note the hypointense intraductal mass (arrow) in the left intrahepatic duct.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 11. Intraductal papillary mucinous neoplasm of the bile duct in a 58-year-old woman. (c) ERCP cholangiogram shows a filling defect (arrow) within the marked dilated extrahepatic bile duct, due to mucin.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 11. Intraductal papillary mucinous neoplasm of the bile duct in a 58-year-old woman. (d) Coronal gadoxetic acid-enhanced T1-weighted image obtained at 60 min post-injection shows contrast-filled bile duct with an elongated, low signal intensity lesion (*), which represents mucin.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 11. Intraductal papillary mucinous neoplasm of the bile duct in a 58-year-old woman. (e) Endoscopy reveals mucin leaking from the papilla.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 12. Signet ring cell carcinoma of the stomach in a 45-year-old woman. Coronal reformatted contrast-enhanced CT shows diffuse gastric wall thickening with strong enhancement (arrowhead) along the lesser and greater curvature of the stomach.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 13. Signet ring cell carcinoma of the rectum in a 42-year-old man. (a, b) Axial (a) and coronal-reformatted (b) contrast-enhanced CT images show concentric wall thickening with malignant target sign (arrowheads in a, arrow in b) in the rectum.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 13. Signet ring cell carcinoma of the rectum in a 42-year-old man. (a, b) Axial (a) and coronal-reformatted (b) contrast-enhanced CT images show concentric wall thickening with malignant target sign (arrowheads in a, arrow in b) in the rectum.
Fig. 0: Figure 13. Signet ring cell carcinoma of the rectum in a 42-year-old man. (c) Photomicrograph (original magnification, ×200; H-E stain) shows multiple signet ring cells.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 14. Mucinous carcinoma of the stomach in a 67-year-old man. (a) Contrast-enhanced CT shows a large mass lesion in the gastric cardia containing large mucin pools (*) and enhanced solid portions (arrow). The mass lesion is generally covered with normal mucosa, with the exception of an ulcer at the top of the tumor.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 14. Mucinous carcinoma of the stomach in a 67-year-old man. (b) Endoscopy image shows mucin leaking from the gastric mass.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 15. Mucinous adeno-carcinoma of the cecum in a 69-year-old man. Contrast-enhanced CT shows a huge eccentric hypo-attenuating mass with poor enhancement of the solid portion of the cecum (*). The mass has invaded the retroperitoneum (arrow).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 16. Mucinous adenocarcinoma of the rectum in a 63 year-old man. (a, b) Axial (a) and sagittal (b) T2-weighted images show an area of hyperintense mucin pools (arrowhead) in the rectal mass.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 16. Mucinous adenocarcinoma of the rectum in a 63 year-old man. (a, b) Axial (a) and sagittal (b) T2-weighted images show an area of hyperintense mucin pools (arrowhead) in the rectal mass.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 16. Mucinous adenocarcinoma of the rectum in a 63 year-old man. (c) Photomicrograph (original magnification, ×40; H-E stain) shows large pools of extracellular mucin and tumor cells.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 17. Perianal mucinous adenocarcinoma in a 41-year old man. (a) Sagittal T2-weighted image shows a hyperintense mass in the perianal area (arrowheads).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 17. Perianal mucinous adenocarcinoma in a 41-year old man. (b) Sagittal contrast-enhanced T1-weighted image shows mesh-like internal enhancement within the mass (arrowheads).

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 17. Perianal mucinous adenocarcinoma in a 41-year old man. (c) Photomicrograph (original magnification, ×100; H-E stain) shows large pools of extracellular mucin and tumor cells.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 18. Intraperitoneal spread of mucinous adenocarcinoma of the urachus (also called peritoneal mucinous carcinomatosis) in a 57-year-old man. (a) Contrast-enhanced CT shows a midline supravesical mass with heterogeneous attenuation. Within the mass are scattered low-attenuation areas (arrowheads), which represent mucin.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 18. Intraperitoneal spread of mucinous adenocarcinoma of the urachus (also called peritoneal mucinous carcinomatosis) in a 57-year-old man. (b) Contrast-enhanced CT of the upper abdomen shows low-attenuation mucinous ascites scalloping the liver margin. Note diffuse nodular thickening of the peritoneum (arrowheads) and the right pleural effusion (*).
Fig. 0: Figure 19. Adenoma malignum of the cervix in a 30 year-old-woman with Peutz-Jeghers syndrome. (a) Axial T2-weighted image shows a multicystic lesion with a solid component (arrowheads) in the uterine cervix.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 19. Adenoma malignum of the cervix in a 30 year-old-woman with Peutz-Jeghers syndrome. (b) Contrast-enhanced CT shows multiple polyps (arrows) in the duodenum and small bowel causing intussusceptions.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 20. Mucinous carcinoma of the gallbladder in a 77 year-old woman. (a) Contrast-enhanced CT shows localized wall thickening (arrow) in the body of the gallbladder containing a suspicious mucin pool.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Fig. 0: Figure 20. Mucinous carcinoma of the gallbladder in a 77 year-old woman. (b) Contrast-enhanced CT inferior to (a) shows a punctate calcification and localized wall thickening (arrow) in a mildly distended gallbladder.

© Radiology, Pusan National University, Pusan National university Hospital - Pusan/KR
Conclusion

Various mucin-producing neoplasms originate in different abdominal and pelvic organs. Distinguishing mucinous from nonmucinous tumors is important because of the differences in clinical outcome. Imagingmodalities play a critical role in differentiating these two entities. Due to high water content, mucin has a similar appearance to water on both CT and MR imaging, except when thick and proteinaceous, and then it tends to be hyperdense compared to water and hyperintense on T1- and hypointense on T2-weighted images. A correct diagnosis of mucin-producing neoplasms is possible, when these imaging features are identified on cross-sectional imaging. Because the imaging appearance of mucin-producing neoplasms differs somewhat depending on the organ of origin, additional information about the distinctive imaging features of mucin-producing neoplasms according to tumor location may also facilitate accurate diagnosis and treatment.
Personal Information

Kwon Hoon1, MD; Kim Suk1, MD (kimsuk@medimail.co.kr); Lee Nam Kyung1, MD; Kim Hyun Sung2, MD; Jeon Tae Yong2, MD; Park Do Youn3, MD

1 Department of Radiology, 2 Department of Surgery, 3 Department of Pathology, Pusan National University Hospital, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea.
References

