Properties of a new high-ratio anti-scatter grid in digital mammography

Poster No.: C-2647
Congress: ECR 2018
Type: Scientific Exhibit
Authors: R. Klausz, C. Auclair, F. Mattana, V. Albufera, Y. Le Meur, F. Jeunehomme Patoureaux; BUC/FR
Keywords: Breast, Radiation physics, Mammography, Instrumentation
DOI: 10.1594/ecr2018/C-2647

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

The performances of a new high-ratio DBT-compatible A/S grid were evaluated.

When introduced in mammography in 1978, the goal of an anti-scatter (A/S) grid was to increase image contrast. However, the reduced contribution of scattered radiation to the image receptor entrance air kerma (IREAK) had to be compensated by an increase in primary radiation and patient dose to maintain the IREAK value needed by the analog image receptors (screen/film combinations) to provide optimal images. Since that, A/S grids have been perceived as improving image quality at the expense of an increased dose to patients. When film/screens were replaced with digital image receptors, image display became independent from image acquisition, and it has been possible to restore image contrast by processing [1-2]. It could therefore be thought that a grid is not useful anymore. This is true for the deterministic degradation of image contrast, but the quantum noise of scattered photons irreversibly degrades the contrast-to-noise ratio of images. For this reason, the presence of an A/S grid can be fully justified if the reduction in scatter noise by the grid more than compensates the attenuation of non-scattered photons; new metrics have been proposed to describe this benefit [3-5]. Evaluations of the net balance of the presence of a grid in digital mammography have been done [5, 7, 8]. This is quantified by a "new quality parameter: the Image Improvement Factor or Q-factor (Q) which better describes the properties of the anti-scatter grid, especially for digital detector" [6], introduced with the 2013 revision of the IEC 60627 standard. "This factor better describes the properties of anti-scatter grids than the Grid Exposure Factor B and the Contrast Improvement Factor K, especially for digital detector applications. Namely, [for a constant entrance dose] the signal-to-noise ratio (SNR) for digital X-ray detectors is increased proportionally with the square root of the factor Q when an anti-scatter grid is applied. » [6]. Q is equal to the square of K_{SNR} as defined in [3].

As a consequence, the presence of an A/S grid is beneficial as soon as Q > 1.

In addition to regular 2D mammography, using A/S grids for digital breast tomosynthesis (DBT) has been evaluated [9-12].

This work intends to measure the Image Improvement Factor of a new high-ratio DBT-compatible A/S grid and compare it to the values of Q provided by the A/S grid previously used in the same application.
Methods and materials

The previous grid (Grid A) and the new grid (Grid B) are linear focused grids, with a focusing distance of 600 mm. Both are DBT-compatible, and therefore their 15 µm lead strips are disposed parallel to the chest wall side of the breast-support, with the central line at the chest wall edge of the grid. They are protected by carbon-composite covers on both sides. The two grids are used in DBT equipment, SenoClaire for Grid A and Senographe Pristina™ for grid B (both from GE Healthcare, Chicago, IL, USA).

Grid A has a 5:1 ratio, 104 strips/cm, with graphite interspaces. Grid B has a 11:1 ratio, 67 strips/cm and fibre interspaces. Both are used in reciprocating mode, with amplitudes of 400 µm (grid A) and 2 mm (grid B).

The Image Improvement Factors (Q) of each grid were measured. Instead of a direct measurement of CNR with and without the grids as in [5], Q was "evaluated as the ratio of the square of the Transmission of Primary Radiation (T_p) to the Transmission of Total Radiation (T_t)" [6].

\[T_t = 1/B \]

\[K = T_p/T_t \]

\[Q = T_p^2/T_t = T_p^2.B = K.T_p \]

However, in deviation with the standard, both grids were measured in regular operating conditions in their respective equipment, using clinical beam qualities and the image receptor as the detector, in reciprocating mode, with the carbon composite breast support in place.

Both systems use an X-ray tube with a rhodium anode. For grid A a 25 µm rhodium filter was used at 30 kV and for grid B a 30 µm silver filter at 34 kV. This difference has not been considered as significant knowing that the influence of beam quality on scatter to primary ratio has been demonstrated as negligible [13].

The primary (T_p) and total (T_t) transmissions were measured using PMMA as scattering material, for thicknesses t= 0 to 70 mm.
Measuring Primary transmissions

The primary transmission T_p (transmission of non-scatter radiation) was measured in narrow-beam, low-scatter conditions. PMMA slabs were placed directly at the output of the tube head, between two radiopaque steel plates with aligned holes. The steel plates are assembled to form a support for the PMMA slabs (Fig. 1 on page 5 and Fig. 2 on page 5); the top plate was designed to be inserted in place of the face-shield, using the the same rails.

Images were acquired with a current-time product allowing to reach image levels equal to or higher than typical used clinically.

Image levels were measured in small regions of interest (ROIs) included in the image of the collimating holes, with the grid present, then removed (Fig. 3 on page 6). For each PMMA thickness, T_p was computed as the ratio of image levels respectively with and without the grid.

The operation was repeated for the two grids.

Measuring Total transmissions

The total transmission T_t, (total transmission by the grid of primary and scatter) was measured in broad-beam, high scatter conditions. PMMA slabs of the same thicknesses as for narrow-beam conditions and larger than the full fields of view were placed on the breast support, covering the full detector field. The regular system collimator was wide open (23x31 cm for grid A, 23x29 cm for grid B).

Image levels were measured in the same ROIs as for T_p measurements with the grid present, then removed (Fig. 4 on page 7). For each PMMA thickness, T_t was computed as the ratio of image levels respectively with and without the grid.

Computing Image Improvement factors

For each PMMA thickness, Q was computed as the ratio of T_p^2 and T_t.

Fig. 1: PMMA support for narrow-beam low-scatter conditions; viewed from top left.

© GE Healthcare - BUC/FR
Fig. 2: PMMA support for narrow-beam low-scatter conditions; viewed from front and bottom.

© GE Healthcare - BUC/FR
Fig. 3: Primary transmission measuring set up. a) with grid in; b) with grid out

© GE Healthcare - BUC/FR
Fig. 4: Total transmission measuring set up. a) with grid in; b) with grid out

© GE Healthcare - BUC/FR
Results

For primary transmission, the narrow-beam collimation tool was used, with the different heights of PMMA plates; measurements were done in the front central hole (Fig. 6 on page 11).

Results of measurements and computations of T_p, T_t, and Q are provided in Table 1 on page 12 for grid A and Table 2 on page 13 for grid B.

For grid A, T_p values were found to be between 0.69 (t=0) and 0.72 (t=70 mm).

For grid B, T_p values were found to be between 0.675 (t=0) and 0.71 (t=70 mm).

The primary transmission of grid B is therefore lower than that of grid A, from 2.3% in absence of object to 1.5% at maximum thickness (70 mm PMMA). The variation with thickness can be explained by some beam hardening.

For grid A, the values of "bucky factor" B were found between 1.47 (t=0) and 2.28 (t=70 mm).

For grid B, the values of "bucky factor" B were found between 1.51 (t=0) and 2.65 (t=70 mm).

In both cases the variation of B with thickness was linear.(Fig. 8 on page 15)

The Grid Exposure Factor B of grid B is increased by 2.7% (t=0) to 14% (t=70%) relative to grid A. In film/screen imaging the exposure to the image receptor should be increased in that proportion, with the benefit of a contrast improvement factor increase by 0.4% (t=0) to 12.7% (t=70%).

Of more interest is the Image Improvement Factor Q, with the following results (Fig. 9 on page 16)

- For grid A: from 0.70 (t=0) to 1.18 (70 mm); $Q \geq 1$ for $t \geq 42$ mm
- For grid B: from 0.69 (t=0) to 1.34 (70 mm); $Q \geq 1$ for $t \geq 34$ mm
Fig. 4: Total transmission measuring set up. a)with grid in; b)with grid out

© GE Healthcare - BUC/FR
Fig. 5: PMMA plates support for narrow-beam collimation

© GE Healthcare - BUC/FR
Fig. 6: Image obtained in narrow-beam conditions. The dimensions are stated in the image receptor plane. Image levels are measured in the circular ROI on-axis, chestwall side.

© GE Healthcare - BUC/FR
<table>
<thead>
<tr>
<th>PMMA Thickness (mm)</th>
<th>T_p measurements</th>
<th>T_t measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With grid</td>
<td>No grid</td>
</tr>
<tr>
<td>0</td>
<td>1448.3</td>
<td>2096.1</td>
</tr>
<tr>
<td>10</td>
<td>1496.9</td>
<td>2140.0</td>
</tr>
<tr>
<td>20</td>
<td>1569.2</td>
<td>2223.5</td>
</tr>
<tr>
<td>30</td>
<td>1566.2</td>
<td>2209.9</td>
</tr>
<tr>
<td>40</td>
<td>1360.0</td>
<td>1897.9</td>
</tr>
<tr>
<td>50</td>
<td>1276.5</td>
<td>1780.2</td>
</tr>
<tr>
<td>60</td>
<td>1341.5</td>
<td>1867.6</td>
</tr>
<tr>
<td>70</td>
<td>1363.5</td>
<td>1892.5</td>
</tr>
</tbody>
</table>

Table 1: Measurement results and computations of T_p, T_t, and Q for grid A

© GE Healthcare - BUC/FR
<table>
<thead>
<tr>
<th>PMMA Thickness (mm)</th>
<th>Tp measurements</th>
<th></th>
<th>Tt measurements</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With grid</td>
<td>No grid</td>
<td>Tp</td>
<td>With grid</td>
<td>No grid</td>
<td>Tt</td>
<td>B</td>
<td>Q</td>
</tr>
<tr>
<td>0</td>
<td>1882.1</td>
<td>2788.0</td>
<td>0.675</td>
<td>1956.8</td>
<td>2948.7</td>
<td>0.664</td>
<td>1.51</td>
<td>0.687</td>
</tr>
<tr>
<td>10</td>
<td>1821.2</td>
<td>2664.7</td>
<td>0.683</td>
<td>1866.6</td>
<td>3110.6</td>
<td>0.600</td>
<td>1.67</td>
<td>0.778</td>
</tr>
<tr>
<td>20</td>
<td>1773.1</td>
<td>2565.3</td>
<td>0.691</td>
<td>1836.0</td>
<td>3351.2</td>
<td>0.548</td>
<td>1.83</td>
<td>0.872</td>
</tr>
<tr>
<td>30</td>
<td>1812.1</td>
<td>2600.6</td>
<td>0.697</td>
<td>1850.2</td>
<td>3686.9</td>
<td>0.502</td>
<td>1.99</td>
<td>0.967</td>
</tr>
<tr>
<td>40</td>
<td>1714.0</td>
<td>2443.0</td>
<td>0.702</td>
<td>1968.0</td>
<td>4248.6</td>
<td>0.463</td>
<td>2.16</td>
<td>1.063</td>
</tr>
<tr>
<td>50</td>
<td>1895.7</td>
<td>2678.0</td>
<td>0.708</td>
<td>2088.0</td>
<td>4841.4</td>
<td>0.431</td>
<td>2.32</td>
<td>1.162</td>
</tr>
<tr>
<td>60</td>
<td>1787.2</td>
<td>2530.1</td>
<td>0.706</td>
<td>1965.9</td>
<td>4881.5</td>
<td>0.403</td>
<td>2.48</td>
<td>1.239</td>
</tr>
<tr>
<td>70</td>
<td>1778.3</td>
<td>2505.7</td>
<td>0.710</td>
<td>1981.9</td>
<td>5260.6</td>
<td>0.377</td>
<td>2.65</td>
<td>1.337</td>
</tr>
</tbody>
</table>

Table 2: Measurement results and computations of Tp, Tt, and Q for grid B

© GE Healthcare - BUC/FR
Fig. 7: Variations of Primary Transmission (Tp) with PMMA thickness for grids A and B

© GE Healthcare - BUC/FR
Fig. 8: Variations of Grid Exposure Factor ("Bucky factor") B with PMMA thickness for grids A and B

© GE Healthcare - BUC/FR
Fig. 9: Variations of Image Improvement Factor Q with PMMA thickness for grids A and B

© GE Healthcare - BUC/FR
Conclusion

The reduction in PMMA thickness were Q # 1 (t= 42 mm PMMA for grid A, t= 34 mm PMMA for grid B) demonstrates a significant progress from grid A to grid B. These values should be compared to the generally accepted average-breast equivalent of 45 mm PMMA [15], even if a direct comparison between PMMA thickness and breast thickness is not fully valid here since usual equivalences are based on attenuation, not scatter. In comparison, a threshold of 65 mm was found in [5]. With a different method (CDMAM contrast/detail phantom) and a first-generation digital mammography equipment (Senographe 2000D, GE Healthcare) equipped with the original 5:1 fibre interspaced grid, "For 5 and 7 cm [PMMA], no significant difference was found" [14] between images acquired with and without a grid. Considering the distribution of PMMA-equivalent thicknesses [5], only a small fraction of the population would then benefit from the presence of a grid with these values. With grid A, the beneficial thickness is close to that of the average breast, meaning that approximately half the population examined benefits from the presence of this grid (assuming a normal distribution as an approximation). Since the patient dose is increasing with breast thickness, the population dose reduction is more significant. With grid B and a threshold reduced to 34 mm, the proportion of a typical western population which can benefit from the presence of the grid [17] is raised to more than 90%.

Consequently, provided the automatic exposure control design is not intended to maintain a constant image receptor entrance air-kerma, using grid B allows maintaining a given CNR with a further moderation of the patient dose for thick breasts. Thanks to the DBT-compatible disposal of this grid, this benefit applies to both 2D and 3D mammography with no distinction.
Personal information

All authors are employees of GE Healthcare

Global Women's Health Engineering
283 rue de la Miniere
78530 Buc (FR)

Rémy Klausz remy.klausz@ge.com

Colin Auclair colin.auclair@ge.com
currently: Mammography Clinical Leader,
Marketing Europe

Fabio Mattana, PhD fabio.mattana@ge.com

Vincent Albufera vincent.albufera@ge.com

Yann Le Meur, PhD Yann.LeMeur@ge.com

Fanny Patoureaux, PhD fanny.patoureaux@ge.com
References

[1] Gonzalez Trotter, Dinko E.; Tkaczyk, J. Eric; Kaufhold, John; Claus, Bernhard E. H.; Eberhard, Jeffrey W.
Thickness-dependent scatter correction algorithm for digital mammography

Iterative scatter correction for grid-less bedside chest radiography: Performance for a chest phantom
Radiation Protection Dosimetry 169(1-4):308-312 (2016)

[3] Ulrich Neitzel
Grids or air gaps for scatter reduction in digital radiography: A model calculation
Med Phys 19 (2) 475-481 (1992)

Influence of scatter reduction on lesion signal-to-noise ratio and lesion detection in digital chest radiography

Grid removal and impact on population dose in full-field digital mammography

[6] Diagnostic X-ray imaging equipment - Characteristics of general purpose and mammographic anti-scatter grids
IEC standard 60627:2013

[7] Han Chen, Mats Danielsson, Cheng Xu, and Björn Cederström
On image quality metrics and the usefulness of grids in digital mammography
Journal of Medical Imaging 2(1), 013501 (Jan-Mar 2015)
A comprehensive model for x-ray projection imaging system efficiency and image quality
characterization in the presence of scattered radiation

Use of an Anti-Scatter Grid in Digital Breast Tomosynthesis. Radiological Society of North
http://archive.rsna.org/2008/6018151.html

[10] Colin Auclair, Jeffrey Shaw, Mathias Cisaruk, Remy Klausz, Henri Souchay
Introduction and Benefits of an Anti-Scatter Grid in Digital Breast Tomosynthesis
http://archive.rsna.org/2013/13043983.html

Radiation exposure of digital breast tomosynthesis using an antiscatter grid compared with full-field digital mammography.
Invest Radiol. 2015 Oct;50(10):679-85

[12] Tushita Patel, Heather Peppard
Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner
Medical Physics, 43 (4), 1720-1735 (2016)

Scatter/primary in mammography: Comprehensive results
Medical Physics, Vol. 27, No. 10, October 2408-2416 (2000)

The value of scatter removal by a grid in full field digital mammography
Medical Physics, Vol. 30, No. 7, July 2003
