Assessment of image quality criteria from digital radiography

Poster No.: B-0827
Congress: ECR 2017
Type: Scientific Paper
Keywords: Professional issues, Management, Radiographers, Digital radiography, Diagnostic procedure, Health policy and practice, Technical aspects, Quality assurance, Image verification, Education and training
DOI: 10.1594/ecr2017/B-0827

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

To assess the image quality criteria from examinations in digital radiography based on quality control charts and to demonstrate the importance of implementing an image quality control system.
Methods and materials

A retrospective study was conducted in a public radiology department using a random sample of 1200 radiographs grouped in 60 smaller samples, each one with 20 radiographs.

Using a checklist based on the "American College of Radiology Practice Guidelines for the Performance of abdominal, chest and extremities radiographs". All examinations were analyzed and classified as conform if all quality criteria stablished were present, or non-conform if at least one criteria were missing. The conformities and non-conformities found were recorded and used to establish three types of quality control chars in order to suggest corrective actions for improvement:

(1) the proportion of conformities and non-conformities (p chart);

(2) the total number of non-conformity exams (np chart) and

(3) the total number of non-conformities in each sample (c chart),

In all cases, control limits were established, mean and variance were determinated.
Results

Considering 1200 exams observed, 473 were classified as non-conform (39.42%) and 727 were classified as conform (60.58%). Considering the non-conform exams group, the quality criteria "incomplete or incorrect image post-processing" presented the highest number of non-conformities (58.92%), followed by "incorrect patient positioning" (35.32%) and "artefacts" (5.77%). Chest radiograph showed the highest number of non-conformities (174).

Abdominal Radiograph

- **P Chart - Abdominal Radiograph**: Considering p chart to the abdominal radiograph, the sample is located inside the SCL-LCL range so the process is under statistical control (Fig. 1 on page 6). The results present the following values: the Central Limit (44%), the Superior Control Limit (78%) and the Lower Control Limit (11%).

- **NP Chart - Abdominal Radiograph**: Considering np chart to the abdominal radiograph, the process was also considered under statistical control (Fig. 2 on page 6). The limits were: the Central Limit (8.83), the Superior Control Limit (15.50) and the Lower Control Limit (2.17).

- **C Chart - Abdominal Radiograph**: The c chart for abdominal radiograph show the values within limits (Fig. 3 on page 7): the Central Limit (10.42), the Superior Control Limit (20.10) and the Lower Control Limit (0.73).

Chest Radiograph

- **P Chart - Chest Radiograph**: Considering p chart to the chest radiograph, the sample is located inside the SCL-LCL range so the process is under statistical control (Fig. 4 on page 8). The results present the following values: the Central Limit (58%), the Superior Control Limit (91%) and the Lower Control Limit (24%).

- **NP Chart - Chest Radiograph**: Considering np chart to the chest radiograph, the process was also considered under statistical control (Fig. 5 on page 9). The limits were: the Central Limit (11.50), the Superior Control Limit (18.13) and the Lower Control Limit (4.87).

- **C Chart - Chest Radiograph**: The c chart for chest radiograph show the values within limits (Fig. 6 on page 10): the Central Limit (14.50), the Superior Control Limit (25.92) and the Lower Control Limit (3.08).

Wrist Radiograph
• **P Chart - Wrist Radiograph:** Considering p chart to the wrist radiograph, the sample is located inside the SCL-LCL range so the process is under statistical control (Fig. 7 on page 11). The results present the following values: the Central Limit (27%), the Superior Control Limit (57%) and the Lower Control Limit (3%).

• **NP Chart - Wrist Radiograph:** Considering np chart to the wrist radiograph, the process was also considered under statistical control (Fig. 8 on page 12). The limits were: the Central Limit (5.42), the Superior Control Limit (11.38) and the Lower Control Limit (-0.55).

• **C Chart - Wrist Radiograph:** The c chart for wrist radiograph show the values within limits (Fig. 9 on page 13): the Central Limit (14.50), the Superior Control Limit (25.92) and the Lower Control Limit (3.08).

Ankle Radiograph

• **P Chart - Ankle Radiograph:** Considering p chart to the ankle radiograph, the sample is located inside the SCL-LCL range so the process is under statistical control (Fig. 10 on page 14). The results present the following values: the Central Limit (28%), the Superior Control Limit (58%) and the Lower Control Limit (3%).

• **NP Chart - Ankle Radiograph:** Considering np chart to the ankle radiograph, only the sample 1 is located outside SCL-LCL range (Fig. 11 on page 15). The limits were: the Central Limit (5.50), the Superior Control Limit (11.49) and the Lower Control Limit (-0.49).

• **C Chart - Ankle Radiograph:** The c chart for ankle radiograph show that only the sample 1 is located outside SCL-LCL range (Fig. 12 on page 16): the Central Limit (6.08), the Superior Control Limit (13.48) and the Lower Control Limit (-1.32).
Fig. 1: p Chart: the proportion of conformities and non-conformities to the abdominal radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 2: np Chart: the total number of non-conformity exams to the abdominal radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 3: c Chart: the total number of non-conformities to the abdominal radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 4: p Chart: the proportion of conformities and non-conformities to the chest radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 5: np Chart: the total number of non-conformity exams to the chest radiograph.
Fig. 6: c Chart: the total number of non-conformities to the chest radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 7: p Chart: the proportion of conformities and non-conformities to the wrist radiograph.
Fig. 8: np Chart: the total number of non-conformity exams to the wrist radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 9: c Chart: the total number of non-conformities to the wrist radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 10: p Chart: the proportion of conformities and non-conformities to the ankle radiograph

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 11: np Chart: the total number of non-conformity exams to the ankle radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Fig. 12: c Chart: the total number of non-conformities to the ankle radiograph.

© Medical Imaging and Radiotherapy, School of Health - University of Algarve - Faro/PT
Conclusion

This research allowed the identification of different types of non-conformities found in abdominal, chest and extremities radiographs, which have impact on imaging quality. Therefore, the existence of suitable quality control of the radiographic images is essential to achieve high quality standards in radiology departments. It is recommendable to do training courses regularly improving radiographers performance and strategies to reduce the non-conformities must be implemented.
Personal information

Ana Mendes (BSc), Collaborator in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal.

Anabela Ribeiro (MSc), Professor in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal. Radiographer in Centro Hospitalar do Algarve - Portimão, Portugal. Researcher in CICS.NOVA (Interdisciplinary Centre of Social Sciences, Faculty of Social Sciences and Humanities).

Luís Ribeiro (PhD), Professor in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal. Researcher in CIDAF - University of Coimbra (Centro de Investigação do Desporto e da Atividade Física) and Member of Studies Center in Healthcare (CES-ESSUALG). Email: lpribeiro@ualg.pt

António Abrantes (PhD), Professor in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal. Researcher in CICS.NOVA (Interdisciplinary Centre of Social Sciences, Faculty of Social Sciences and Humanities) and Member of Studies Center in Healthcare (CES-ESSUALG). E-mail: aabrantess@ualg.pt

Rui Almeida (MSc), Professor in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal. Radiographer in Centro Hospitalar do Algarve - Faro, Portugal. Researcher in CICS.NOVA (Interdisciplinary Centre of Social Sciences, Faculty of Social Sciences and Humanities) and Member of the Studies Center in Healthcare (CES-ESSUALG). Secretary-General of Portuguese Association of Medical Imaging and Radiotherapy (APIMR). E-mail: rpalmeida@ualg.pt

Kevin Azevedo (PhD). Professor in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal. Radiographer in Centro Hospitalar do Algarve - Faro, Portugal. E-mail: kbazevedo@ualg.pt

Sónia Rodrigues (MSc), Professor in the Medical Imaging and Radiotherapy Department, Health School - University of Algarve, Portugal. Radiographer in Centro Hospitalar do Algarve - Faro, Portugal. E-mail: srodrigues@ualg.pt
References

