Comparison of the Superb Microvascular Imaging Technique (SMI) and the Color-Doppler Techniques in Evaluating the Blood Flow in Testicles in Children

Poster No.: C-0197
Congress: ECR 2017
Type: Scientific Exhibit
Authors: L. Karaca¹, M. Kantarci¹, A. Oral¹, R. Sade², H. Ogul¹, B. ummögülüm¹, A. Okur³, Y. #hsan¹, ¹Erzurum/TR, ²Erzurum, Erzurum/TR, ³Yozgat/TR
Keywords: Image verification, Comparative studies, Ultrasound-Colour Doppler, Paediatric
DOI: 10.1594/ecr2017/C-0197

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

There are radiological imaging challenges associated with evaluating blood flow in the testicles of small children. Especially in acute cases such as torsion in children, evaluating blood flow may be extremely difficult in clinical practice. For this reason, clinically evaluating patients with acute scrotal pain is difficult, and frequent misdiagnoses may occur. It has been reported that misdiagnoses account for 7-10% of the work of pediatric urologists, and 45% among practicing physicians (1).

It has been reported in various studies that a Color Doppler examination (CD) is not sufficient for making a diagnosis, particularly in children (2,3). For this reason, it is important that the testicles be evaluated in a quick and accurate manner. Today, the gold-standard test for evaluating testicular blood flow is Color-power Doppler (4-6). Contrast-enhanced magnetic resonance imaging or tomography may also be used for evaluating blood flow according to clinical cases. However, these techniques are both expensive and difficult to use with children.

The blood flow detected with the conventional CD technique yields information only about the macro blood flow in testicles, and does not provide information about micro blood flow. Contrast-enhanced ultrasonography (US) techniques have been used to evaluate micro blood flow, and it has been reported that these techniques yield useful information about blood flow in the testicles and have contributed to diagnoses (7,8). However, the use of contrast-enhanced US in children is limited.

Superb Microvascular Imaging (SMI) is a new Doppler sonography technique used to determine micro-vascular blood flow. The Doppler signal is formed both by the blood flow and the tissue movement. In the Doppler technique, the powerful movement signals suppress the lower blood flow signals, and the primary image consists of high-velocity blood flows. In SMI, on the other hand, the tissue movement signals are decreased and the low-velocity blood flows are detected. As a result, both high-velocity and low-velocity flows constitute the image in SMI technology.

Since the CD techniques apply a filter to decrease movement artifacts and noise, low-velocity flows are not observed in CD. In other words, the CD technique cannot distinguish between low-velocity flows and movement artifacts. However, SMI is not influenced by artifacts, and the low-velocity flows constitute a component of the image.
It is extremely difficult to evaluate testicular blood flow in children because their testicles are small, and the flows in the testicles are low-velocity (4,9). Superb Microvascular Imaging is an innovative CD technique that has been developed to detect low-velocity flows. It is possible to visualize small vessels with this technique. To the best of our knowledge, there have been no clinical studies conducted thus far that have reported testicular blood flow in children using the SMI technique. The purpose of this study is to compare evaluations of blood flow in normal testicular tissues in children using conventional Doppler techniques and SMI.
Methods and materials

This work was approved by the Ethical Board of our hospital, and all of the patients were informed about the examinations and the procedure, and their written consents were obtained.

Thirty prospective patients who visited the Pediatric Surgery Department with urinary system infection complaints between January 2015 and October 2015 were included in our study. The average age of the patients was 15 months (range: 2-84 month). None of the patients had complaints about their scrotum. The evaluation included testicular tissues that were detected as normal, and the entire ultrasound examination was conducted using Grayscale US, CD, PD (Frame Rate 10-15 Hz) and SMI (Frame Rate > 50 Hz). A TOSHIBA Apio 500 (Toshiba Medical System Corporation, Tokyo, Japan) was used in the examination with high-frequency (14 Mhz) line array transducers.

To avoid intra-observer variability, all of the sonographic evaluations were performed by two independent radiologists MK (experienced in CD and Testicles Sonography for 15 years; 3 months' experience with SMI and; LK (experienced in CD and Testicles Sonography for 8 years; 2 months' experience with SMI). In each evaluation, focal zone, depth and time gain compensation were adjusted in the gray scale, and the parameters were not changed until the end of the study.

No image processing techniques were applied, and the preset values were preserved. Meanwhile, during the evaluation, no pressure was applied to the transducer to prevent the collapse of vascular structures. The examination was conducted when the patient was relaxing in a supine position and calm. The CD, PD and SMI vascular blood flow images were obtained by taking the same imaging area as the reference area for the testicular tissue. The images were evaluated by two radiologists in a qualitative manner and using the same grading system for each examination. A four-stage evaluation system was used for grading (Figure 1).

Grade 0: No vascularity.

Grade 1 (Minimal): There are one or two spots color encoding.

Grade 2 (Medium): There is one linear color encoding or several spots color encoding.

Grade 3 (Distinct): There are four or more spots color and one linear flow color encoding.
Both sonographers measured three different resistive indexes (RI) values using Color-power Doppler and SMI. To measure the RI value, the application continued until a spectrum with four successive smooth waves was obtained (Figure 2). When the RI value was obtained for each application, the other technique started. The time when the RI value was measured and the duration of each application were recorded in minutes since the beginning of the application. The time evaluation was recorded as the number of minutes. Patients whose RI values could not be obtained in the least 10 minutes were excluded from the study (Figures 3 to 5).

Patients whose testicular tissue could not be obtained at the US, who experienced testicular tissue protruding out of their scrotum, who had a pronounced difference in size between their two testicles, or patients with parenchymal lesions were excluded from the study.
Images for this section:

Fig. 1: Qualitative evaluation of the vascular blood build-up in the testicles. Grade 0(A), Grade 1(B), Grade 2(C) and Grade 3(D).

© - Erzurum/TR
Fig. 2: 4-year-old male child. The measurement of the RI Value with the right testicles with the SMI Technique.

© - Erzurum/TR

Fig. 3: The evaluation of the blood build-up in testicles with the SVI and Color Doppler in 7-month-old child. There are Grade 2(A) with SMI, and Grade 1(B) with Color Doppler vascular flow in the left testicle.

© - Erzurum/TR
Fig. 4: The evaluation of the blood build-up in testicles with the SMI and Power Doppler in 11-month-old child. There are grade 2(A) with SMI, and grade 2(B) with Color Doppler vascular flow in the testicles.

© - Erzurum/TR

Fig. 5: The evaluation of the blood build-up in testicles with the SMI color and Power Doppler in 7-month-old child. There are grade 2(A) with SMI, and grade 0(B-C) with Color and power Doppler vascular flow in the testicles.

© - Erzurum/TR
Results

Each sample of testicular tissue was evaluated using a qualitative grading method. The average blood flow using CD was found to be 1.2000 (SD: 0.22341); the corresponding value for PD was 1.6500 (SD: 0.54695). In SMI, the average blood-flow was 2.3667 (SD: 0.55132) (Figure 6).

There were no statistically significant differences among the three evaluation techniques regarding blood-flow. However, there were significant differences among the CD, PD and SMI in terms of the average values observed by the two sonographers (Figures 7 and 8).

We compared the grading of the two doctors using the CD, PD and SMI techniques with the Marginal Homogeneity Test (Stuart-Maxwell) because the category number of the two dependent groups was \(k \leq 3\). In this context, there was a significant difference between the grading of the two doctors for the CD and SMI techniques (\(p = 0.001; p < 0.001\), respectively); no differences were found between the evaluations of the doctors with the PD technique (\(p = 0.106\)).

When we considered the application times of the techniques, we observed that they exhibited a normal distribution (\(p < 0.05\)). No significant differences were found between the evaluation times of the doctors (\(p > 0.05\)).

We observed that there was a significant difference between the application durations of all of the techniques when we applied one-way variance analysis (\(p < 0.05\)) (Table I).
Fig. 6: The average values obtained by using Color Doppler by the two sonographists.

© - Erzurum/TR
Fig. 7: The average values obtained by using Power Doppler by the two sonographists.

© - Erzurum/TR
Fig. 8: The average values obtained by using SMI by the two sonographists.

© - Erzurum/TR
Conclusion

Ultrasound is an easily available and non-invasive imaging technique. Generally, the first technique requested given a pathology of the testicles is Doppler ultrasound. Since conventional Doppler techniques do not reveal low-velocity flows and small vessels, the Doppler technique provides limited data, especially in small children.

There have been various studies reporting that conventional Doppler techniques have important limitations in evaluating testicle vascularity in 2 and 4-year-old children.

There have been several studies in the literature on this topic; however, there have been few studies related to the testicles of very young patients. We believe that our study affords first-time, valuable data about this subject because the average age of our patients was low (15 months on average). Superb Microvascular Imaging yields more detailed vascular flow data in patients with lower ages, which are limited in conventional Doppler techniques; this technique accordingly ensures that many testicle pathologies are evaluated, and distinctive diagnoses are made.

Although conventional Doppler techniques provide valuable data for evaluating blood flow, they do not reveal low-velocity flow data. As a result, conventional Doppler techniques are associated with a loss of data due to movement artifacts. To prevent this loss, the contrast-enhanced Doppler applications have been employed; however, technical applications have been limited.

It has been reported in the literature that SMI is a technique that enables imaging of tissue vascularity without the need for contrast materials.

In our study, the differences among the CD, PD and SMI average values revealed that CD yields the least data about testicular blood flow, and PD and SMI provide more data in terms of evaluating vascularity. There have been various studies reporting that PD provides more data about testicular blood flow than CD. We found that PD provided more vascular data than CD, which is consistent with findings in the literature. Superb Microvascular Imaging provides more vascular flow data compared with CD in blood flow in the testicles. There have been several studies in this area conducted on tissues such as the thyroid and breasts.

According to our research, this study is the first conducted on testicles in children of young ages. Superb Microvascular Imaging provides more detailed data about testicular
vascular structure compared with the CD technique. When we compared SMI and PD in terms of the blood flow in testicles, we observed that the evaluated cases an equal or higher vascularity grade (p = 0.106). We believe that valuable data will be provided on this topic with a wider series of studies. Superb Microvascular Imaging provides more than data than PD for evaluating tissue vascularity of the testicles.

When we considered the duration of the applications of the three techniques, we are observed that the SMI technique ensured the fastest evaluation (p < 0.05). Since it is difficult to ensure patient agreement in small children, the SMI technique may yield important advantages because it ensures a fast evaluation.

There are several limitations to this paper. First off, the number of patients that we considered was relatively small. There is the need for additional studies. However, we evaluated the duration of the techniques, the conventional techniques were applied prior to the SMI. By doing so, the RI value measurement of the vascular structure may have provided an advantage in the SMI technique for the sonographer because it evaluates the same area, and SMI can measure the RI value faster.

We evaluated blood build-up in the testicles of small children using conventional Doppler technique and SMI. Our study revealed that SMI yields more data for evaluating blood flow in the testicles than the CD technique. At the same time, SMI can provide at least as much data as the PD technique for evaluating testicular blood flow. Superb Microvascular Imaging may also shorten the evaluation time of testicle sonography, which is a difficult examination in children. For this reason, it may contribute to vascularity evaluation of the testicles more than the conventional Doppler technique. Additional investigations conducted in the future pertaining to evaluating different disease groups may contribute to the wider use of Superb Microvascular Imaging in the future.
Personal information

LEYLA KARACA, Department of Radiology, Medical Faculty, İnönü University, Malatya, Turkey. karacaleyla4@gmail.com

MEC#T KANTARCI, Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey.

AKGUN ORAL, Department of Pediatric Surgery, Medical Faculty, Ataturk University, Erzurum, Turkey

HAYR# OGUL, Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey.

RECEP SADE, Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey.

UMMUGULSUM BAYRAKTUTAN, Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey.

AYL#N OKUR, Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey.

IHSAN YÜCE, Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey.
References

