Pancreatic neuroendocrine tumors and its various radiographic features. Why is it important to distinguish them from adenocarcinoma?

Poster No.: C-2216
Congress: ECR 2017
Type: Educational Exhibit
Authors: J. Walecki1, M. Durlik1, M. I. Furmanek1, K. Sklinda1, M. Marek2, D. ##cka1, M. Lanckoronski1; 1Warsaw/PL, 2BYTOM/PL
Keywords: Neoplasia, Diagnostic procedure, MR, CT, Pancreas, Oncology
DOI: 10.1594/ecr2017/C-2216

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Learning objectives

• To demonstrate heterogeneous radiological features of pancreatic neuroendocrine tumours (PNT)

• To review how important is to differentiate them from adenocarcinoma of the pancreas.
Background

Pancreatic neuroendocrine tumours (PNT) belong to the group of gastroenteropancreatic neuroendocrine tumours. PNTs are relatively rare tumours, but recently their incidence has been increasing. They usually have better prognosis than adenocarcinoma. Surgery is still the method of choice in terms of treatment. We can also observe the improvement of treatment methods used in case of PNTs based on characteristic features of neuroendocrine cells such as somatostatin receptors expression. Inhibitors of angiogenesis and proliferation of the tumour cells (targeted therapy) and new schemes of systemic chemotherapy are also promising. Neuroendocrine tumors have the ability to produce and secrete peptides and hormones, although many do not present this feature.

Pancreatic neuroendocrine tumors are derived from the islet cells of Langerhans and include insulinomas, gastrinomas, and VIPomas. It can be difficult to characterize a pancreatic neuroendocrine tumor as benign or malignant based upon histology, therefore careful evaluation of local invasive features and distant metastases is important.

Functional tumors which secrete hormones tend to present early as small tumors due to clinical syndrome related to the excess hormone secretion.
Findings and procedure details

Procedure details

In the evaluated group of 130 patients treated in Gastrointestinal Surgery and Transplantology Clinic (years 2012-2016) due to neuroendocrine tumors of the pancreas, we compared histopathological findings with CT / MRI images and summarized the width range measured on most adequate scans, pitfalls and differential diagnoses.

CT Protocol - 64-MDCT scanner :

- **Slice width**: 1 mm.
- **Intravenous contrast**: Iodine-containing contrast agents (>300mg I/L) at an injection rate of 3-4 mL/s.
- **Scan acquisition timing**: arterial phase (at 25-30s) and portal venous phase (at 65-70s).

Findings

Most of neuroendocrine tumors are hypervascular and are isodense to the pancreas on precontrast (non-contrast) CT examinations. Most neuroendocrine tumors tend to be well circumscribed, and rather displacing adjacent structures. PNTs show peak contrast enhancement in the early arterial phase (25-35 s) rather than in late arterial phase (35-45 secs) which is normally used for pancreatic imaging. This is particularly important, because small lesions may be missed in late arterial phase when the tumour will appear isointense/isodense with enhancing pancreatic parenchyma (Fig.1--).

Smaller tumours tend to be homogenous and well circumscribed (Fig. 2,3).

Larger tumours may appear heterogenous and contain areas of necrotic change (Fig.4,5) and they can demonstrate calcifications (Fig.6,7).

PNTs can occasionally manifest as primarily cystic lesions and are distinguishable from other cystic neoplasms by their hypervascular rim (Fig.8).

In MRI examinations these tumors classically demonstrate low signal intensity on T1-weighted images and high signal intensity on T2-weighted images relative to pancreas, but there is a range of signal intensities. Additionally, T1-weighted fat-saturated
sequences have shown to be of value in the identification of these tumors. Similar to CT, these tumors also demonstrate intensive enhancement after the administration of gadolinium - DCE-MRI (dynamic contrast-enhanced MRI) (Fig.9,10,11,12 and Fig.13,14).

CT and MRI both have critical role in suggesting malignant behavior and in the identification of metastatic disease. Features suggesting malignancy include large primary tumor, central necrosis, locally aggressive features such as vascular invasion. PNTs usually have a distinct capsule and they displace rather than invade surrounding structures. They less frequently present with biliary obstruction and tumor related fibrosis, which typically occur in pancreatic adenocarcinomas (Fig. 15).

Liver metastases are most common and have similar appearance to the primary neoplasm, typically presenting as hypervascular lesions with or without central necrosis (Fig.16,17).

The identification of the primary neuroendocrine tumor is important in the treatment of metastatic diseases (Fig.18,19,20,21). Many of the primary lesions are small and identification can be difficult. It may be necessary to perform both CT and MRI in the same case (Fig.22,23,24,25).

The differential diagnosis is necessary and should consider hypervascular metastases e.g. RCC, intrapancreatic splenule and mostly-solid serous cystadenoma.

These are uncommon lesions, without specific features but it is very important to recognize them to prevent unnecessary operation.

Intrapancreatic splenule - especially if is located in the tail of the pancreas (Fig.26,27,28).

Mostly - solid serous cystadenoma (Fig.29,30 and Fig.31- neuroendocrine carcinoma).

Hypervascular metastases - in our material renal cell carcinoma (RCC) (Fig.32).
Fig. 1: PNT in late arterial phase.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 2: Small and homogenous tumour.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 3: Small and homogenous tumour.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 4: Heterogenous PNT.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 5: Large tumour with areas of necrotic change.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 7: PNTs can demonstrate calcifications.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 6: PNTs can demonstrate calcifications.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 8: Primarily cystic PNT.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 10: PNT - T2-weighted image(MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 11: PNT - dynamic contrast-enhanced MRI (DCE-MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 9: PNT - T1-weighted fat-saturated image(MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 12: PNT - DWI image.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 14: Neuroendocrine carcinoma - intensive, heterogenous enhancement after the administration of gadolinium (MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 13: Neuroendocrine carcinoma - T1-weighted fat-saturated image (MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 15: Pancreatic adenocarcinoma.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 17: Neuroendocrine carcinoma (the same patient).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 16: Neuroendocrine carcinoma.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 19: Primary neoplasm - neuroendocrine carcinoma.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 20: Liver metastases - DWI image.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 21: Liver metastases - ADC image.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 18: Liver metastases are most common and have similar appearance to the primary neoplasm.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 23: Lymph node metastasis - DWI image.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 24: Small PNT - T1-weighted fat-saturated image (MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 25: Small PNT - intensive enhancement after the administration of gadolinium (MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 22: Small liver metastasis - DWI image.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 27: Intrapancreatic splenule - DWI image (MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 28: Intrapancreatic splenule.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 26: Intrapancreatic splenule - T1-weighted fat-saturated image (MRI).

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 30: Mostly - solid serous cystadenoma

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 31: Neuroendocrine carcinoma.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 29: Mostly - solid serous cystadenoma.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Fig. 32: Renal cell carcinoma (RCC) metastasis.

© The Central Hospital of the Ministry of the Interior CSK MSWiA - Warsaw/PL
Conclusion

Our observations confirm that smaller tumours of the pancreas tend to be highly vascular and well circumscribed, but larger tumours may appear heterogenous and contain areas of cystic or necrotic change. They can occasionally manifest as primarily cystic lesions and are distinguishable from other cystic neoplasms by their hypervascular rim.

PNTs show peak contrast enhancement in the early arterial phase which is normally used for pancreatic imaging. This is important, because small lesions may be missed in late arterial phase when the tumour will appear isointense with enhancing pancreatic parenchyma, especially when metastatic lesions dominates and the primary lesion is unknown. Features suggesting malignancy in our group include large primary tumor, central necrosis and vascular invasion. PNT usually have a distinct capsule and they displace surrounding structures. As a result they less frequently present with biliary obstruction and tumor related fibrosis, which are a classic mode of presentation for pancreatic adenocarcinomas. The differential diagnosis is necessary and should consider metastases (e.g. RCC), intrapancreatic splenule and mostly-solid serous cystadenoma.

