Intima-media thickness evaluation of common carotid and internal carotid arteries by sonography in Type - 2 diabetes mellitus and its correlation with physical and biochemical parameters

Poster No.: C-1040
Congress: ECR 2017
Type: Scientific Exhibit
Authors: P. P. Suthar¹, H. I. Vithlani¹, D. K. Chawla², K. Mistry³, D. D. Maisuri²; ¹Vadodara, Gu/IN, ²Vadodara/IN, ³Kangra, Hi/IN
Keywords: Diagnostic procedure, Ultrasound-Colour Doppler, Vascular, Biological effects
DOI: 10.1594/ecr2017/C-1040

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

- To evaluate the carotid IMT in patients Type-2 Diabetes and in age and sex matched controls.
- To compare the IMT in both these groups.
- To study the correlation of IMT with physical and biochemical parameters.
Methods and materials

Carotid sonography was performed prospectively in 100 individuals. Of these 50 were Type-2 diabetics and 50 were non-diabetic controls. Inclusion criteria: age 40-70 years, and both the sexes. Patients with valvular heart diseases, pregnancy, past history of connective tissue disorders/vasculitis/ recurrent strokes and patients on statin therapy for more than 1 year for any indication were excluded from the study. Ultrasonographic scanning of carotid arteries was performed using higher resolution B mode colour Doppler and an electrical linear transducer of 12 MHz was used. IMT is anechoic zone between two echogenic lines, first echo is lumen-intima surface, and second echo is caused by media-adventitia interface. [Figure 1] The IMT of the common and internal carotid arteries was measured bilaterally. Highest value in each carotid is taken and average of 2 measures is taken as IMT. After all the necessary tests, we have done the analysis of IMT in Cases and Controls. A detailed medical history and biochemical data like the blood sugar and lipid profiles were obtained in each individual and correlated with the IMT.
Fig. 1: IMT is anechoic zone between two echogenic lines, first echo is lumen-intima surface, and second echo is caused by media-adventitia interface.

© Department of Radiology and Imaging Sciences, Sterling Hospital, Vadodara, India
Results

Carotid sonography was performed prospectively in 100 individuals. Of these 50 were Type-2 diabetics and 50 were non-diabetic controls. Age distribution in diabetic patients: 41-50 years age 12 patients (i.e. 24 %), 51-60 years age 15 patients (i.e. 30 %), and 61-70 years age 23 patients (i.e. 46 %). Age distribution in non-diabetic patients: 41-50 years age 12 patients (i.e. 24 %), 51-60 years age 14 patients (i.e. 28 %), and 61-70 years age 24 patients (i.e. 48 %). Mean age in diabetic was 60.70±8.24 years and in non-diabetic was 61.20±8.55 years.

Gender distribution in diabetic: male 35 (i.e. 70 %) and female 15 (i.e. 30 %). Gender distribution in non-diabetic: male 38 (i.e. 76 %) and female 12 (i.e. 24 %).

Intima-media thickness of the diabetic group (0.75 ± 0.148 mm) was significantly higher (p-value 0.021, i.e. p-value <0.05) than that of the non-diabetic group (0.59 ± 0.154 mm).

Intima-media thickness of males in the diabetic group was significantly higher (0.76 ± 0.16 mm) than that of males in the non-diabetic group (0.62 ± 0.146 mm). Intima-media thickness of females in the diabetic group was significantly higher (0.738 ± 0.112 mm) than that of females in the non-diabetic group (0.57 ± 0.16 mm).

Plaque was present in 12 (i.e. 24 %) and absent in 38 (i.e. 76 %) diabetic patients as compare to the plaque was present in 7 (i.e. 14 %) and absent in 43 (i.e. 86 %) non-diabetic patients. Incidence of Plaque was statistically more in cases (24.0%) when compared to Controls (14.0%) with p-value of 0.226. [Figure 2, 3]

The diabetic group had significantly higher levels of triglycerides (p-value 0.04, i.e. p-value <0.05), LDL (p-value 0.036, i.e. p-value <0.05), VLDL (p-value 0.045, i.e. p-value <0.05) and lower levels of HDL (p-value 0.02, i.e. p-value <0.05) compared to the controls.

IMT was significantly higher in diabetic smokers (p-value 0.035, i.e. p-value <0.05) as compared to those who did not smoke in the diabetic. IMT was significantly higher in non-diabetic smokers (p-value 0.047, i.e. p-value <0.05) as compared to those who did not smoke in the non-diabetic.

IMT was significantly higher in diabetic alcoholics (p-value 0.026, i.e. p-value <0.05) as compared to those who did not consume alcohol in the diabetic. IMT was significantly
higher in non-diabetic alcoholics (p-value 0.039, i.e. p-value <0.05) as compared to those who did not consume alcohol in the non-diabetic.

So, IMT was higher in smokers and alcoholics as compared to those who did not smoke or consume alcohol in both the diabetic and non-diabetic individuals.

IMT had a positive correlation with systemic blood pressure and duration of diabetes mellitus.
Fig. 2: Hypoechoic non calcified plaque in posterior wall of the right distal carotid bulb extending into the right proximal internal carotid artery.

© Department of Radiology and Imaging Sciences, Sterling Hospital, Vadodara, India
Fig. 3: Hypoechoic plaque with echogenic calcific foci within is present in posterior wall of left carotid bulb.

© Department of Radiology and Imaging Sciences, Sterling Hospital, Vadodara, India
Conclusion

IMT of carotid arteries is increased in Type-2 Diabetic patients as compared to the control subjects. Systemic blood pressure, increased duration of Type-2 Diabetes, smoking and alcohol consumption are important risk factors for increased IMT. Routine sonographic evaluation of carotid arteries in Type-2 Diabetic patients is helpful in identifying patients with substantial atherosclerotic burden.
Personal information

Dr. Pokhraj Suthar MBBS, MD
Consultant Radiologist,
Department of Radiology and Imaging Sciences,
Sterling Hospital,
Vadodara, Gujarat, India.
E-mail: pokhraj_suthar@yahoo.co.in

Dr. Hemen I. Vithlani MBBS, MD
Consultant Radiologist and Head
Department of Radiology and Imaging Sciences,
Sterling Hospital,
Vadodara, Gujarat, India.

Dr. Kamaldeep Chawla MBBS, MD, DNB CARD., FICC, FESC, FSACI
Consultant Interventional Cardiologist and Head
Department of Cardiology,
Sterling Hospital,
Vadodara, Gujarat, India.

Dr. Kewal Mistry MBBS, MD, DNB
Consultant Radiologist,
Department of Radiology,
Synergy Hospital,
Dehradun, India
Dr. Dhruti Maisuri MBBS

Resident Doctor,

Department of Radiology,

Medical College Baroda & S.S.G. Hospital,

Vadodara, Gujarat, India.

2. Damiano Baldassarre, PhD; Mauro Amato, PhD; Alighiero Bondioli. Carotid Artery Intima-Media Thickness Measured by Ultrasonography in Normal Clinical Practice Correlates Well With Atherosclerosis Risk Factors. Stroke 2000;31;2426-2430.

