Dual energy CT in loosening of revision hip prosthesis: a comparison between MARS and non-MARS images.

Poster No.: C-1186
Congress: ECR 2016
Type: Scientific Exhibit
Authors: M. Guziński, L. Waszczuk, K. J. Kubicki, A. Kochman, M. Morawska-Kochman, M. Siadek; Wroclaw/PL
Keywords: Musculoskeletal joint, Pelvis, Extremities, CT, CT-Quantitative, Complications, Prostheses
DOI: 10.1594/ecr2016/C-1186

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Aims and objectives

The aim of this study was to determine the usefulness of DECT modality in postoperative assessment of revision THA implant loosening, by comparing the efficacy of high-energy monochromatic imaging and low-energy DECT images obtained with and without metal artifact reduction software (MARS).
Methods and materials

Our study included 25 patients (16 women, 9 men), of whom 16 had undergone unilateral primary THA, and 9 had undergone bilateral primary THA (totally 34 primary hip prostheses were implanted). Only 1 of these 25 patients underwent consequent bilateral revision, and 24 underwent unilateral revision THA. Seven prostheses were revised due to stem failure, 10 due to acetabular failure, and in 8 due to failure of both parts. The mean age of patients was 69 years, while mean BMI was 29. Mean time interval between revision surgery and postoperative DECT scan was 23 months (ranged from 13 to 30 months).

Scan acquisition and image reconstruction

All examinations were performed using a fast kilovolt switching dual energy CT scanner (64 channel GE Discovery 750 HD unit). Scanning ranged from anterior superior iliac spines to a point 2 cm below the tip of prosthesis' stem. Other parameters were as follows: detector collimation 0.625mm, pitch 1.3; tube voltage 80/140 kV, tube current 600 mA, field of view 50cm. For each patient 390 to 650 scans were acquired (depending on the length and the size of the prosthesis). Two monochromatic datasets were then generated in post-processing: monochromatic images for a photon energy level of 140 keV without metal artifact reduction (140 keV non-MARS) and monochromatic images for a photon energy level of 75 keV with metal artifact reduction (75 keV MARS).

Image review

Each endoprosthesis was evaluated in bone window (2000/350H.U.), in 140 keV non-MARS and 75 keV MARS datasets for signs of loosening by two radiologists with ten and four years' experience in musculoskeletal imaging. Implant loosening was assessed by measuring the thickness of a low density strip between the implant and the bone. For this purpose a three-point scoring system for each area of the prosthesis was established:

- 3 pts - absence of loosening in the evaluated area;
- 2 pts - thickness of low density strip from 1 to 2 mm (incomplete adhesion);
- 1 pt - thickness of low density strip over 2 mm (loosening suspicion);

Loosening of the stem was evaluated independently for three different segments (distal, middle and proximal), loosening of an acetabular component was also evaluated in three zones independently: the central part, marginal part, and in the area around the screws.
To summarize: 6 different segments were evaluated, each rated 1 to 3 points - on the basis of this we propose an eighteen-point radiological grading system in which the highest attainable score was 18 pts, and the lowest was 6 pts. Based on this score, images were assigned into three groups: no loosening (17-18 pts), incomplete adhesion (15-16 pts), loosening suspicion (<15 pts) [Tab.1]. On the day of CT scan, each patient underwent clinical examination performed by an orthopaedic surgeon with 15 years of experience, during this examination function of the hip joint was evaluated with the Harris Hip Score (HHS) [11].

<table>
<thead>
<tr>
<th>Radiological appearance</th>
<th>Radiological score</th>
<th>140 keV Non-MARS</th>
<th>75 keV MARS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. of prostheses</td>
<td>Mean HHS (range)</td>
</tr>
<tr>
<td>No loosening</td>
<td>17-18 points</td>
<td>16</td>
<td>67 (35-97)</td>
</tr>
<tr>
<td>Incomplete adhesion</td>
<td>15-16 points</td>
<td>14</td>
<td>65 (40-97)</td>
</tr>
<tr>
<td>Loosening suspicion</td>
<td><15 points</td>
<td>4</td>
<td>42 (28-67)</td>
</tr>
</tbody>
</table>

Tab. 1. Result of imaging analysis of prosthesis in comparison to HHS for the non-MARS group and MARS group. MARS - metal artifact reduction software, HHS - Harris Hip Score.
Results

The mean radiological score for loosening in the non-MARS group was 16.2, and was statistically significantly lower than in the MARS group (17.0, p<0.001). Three out of 4 prostheses rated as "loosening suspicion" in the non-MARS group, were classified in the MARS group as "incomplete adhesion", and one prosthesis rated "loosening suspicion" in 140 keV non-MARS (scoring only 14 out of 18 pts) was classified as "no-loosening" in 75 keV MARS examination [Tab.1]. Discrepancy analysis between MARS and non-MARS groups has shown that the 7 prostheses which were rated as "incompletely adjacent" in the non-MARS group - were included in a group of 24 prostheses rated as "no-loosening" in the MARS group. Interobserver agreement was found to be 0.80, which is interpreted as a good agreement between the two radiologists.

Radiological prosthesis loosening evaluation in 140 keV non-MARS images correlated to an HHS score with rho=0.43, p=0.03 while there was no statistical correlation between 75 keV MARS images and HHS, rho=0.15, p=0.47.

In the linear regression analysis between 140 keV non-MARS images and HHS score was statistically significant, coefficient a was 0.03 and adjusted R-squared, 0.19; p=0.03 (Fig. 1) while in MARs images the correlation was not statistically significant, p=0.51; coefficient a, 0.01 and adjusted R-squared, 0.02 (Fig.2).

In our study in 140 keV non-MARS images shape distortion artifacts weren't found in any of 34 prostheses (Fig. 4), while in 75 keV MARS these artifacts were noticed in 22 of 34 prostheses (Fig 3).
Fig. 1: The diagram showing a statistically significant positive correlation between radiological score and clinical examination findings [HHS] in 140keV non-MARS group (p=0.03)

© Dep.of Radiology, University Hospital - Wroclaw/PL
Fig. 2: The diagram showing no statistically significant correlation between radiological score and clinical examination findings [HHS] in the 75keV MARS group (p=0.51)

© Dep.of Radiology, University Hospital - Wroclaw/PL
Fig. 3: Fig. 3a. 60 year-old male patient clinically with loosening HHS=43. Coronal MARS reconstruction image reveals shape distortion and ground-glass blurring area around screws and margin of the Burch-Schneider acetabular cage.

© Dep.of Radiology, University Hospital - Wroclaw/PL
Fig. 4: Fig. 3b. The same patient, coronal reconstruction non-MARS image. There is no blurring and shape distortion and fracture of the upper screw and small zone of loosening could be demonstrated.

© Dep.of Radiology, University Hospital - Wroclaw/PL
Conclusion

In our opinion this observation leads to the conclusion that the correct approach for revision THA DECT imaging should include the application of at least two datasets:

- **high-energy monochromatic reconstructions without MARS** - to evaluate bone, hardware and bone-implant interface (loosening) and

- **low-energy monochromatic reconstructions with MARS** - which should be used in assessment of soft tissues of the thigh and pelvis.

These two DECT datasets are complementary and should be evaluated inseparably to prevent omission of relevant clinical information (Fig. 3,4).
Fig. 3: Fig. 3a. 60 year-old male patient clinically with loosening HHS=43. Coronal MARS reconstruction image reveals shape distortion and ground-glass blurring area around screws and margin of the Burch-Schneider acetabular cage.
Fig. 4: Fig. 3b. The same patient, coronal reconstruction non-MARS image. There is no blurring and shape distortion and fracture of the upper screw and small zone of loosening could be demonstrated.

© Dep. of Radiology, University Hospital - Wroclaw/PL
Personal information

co-authors:

#ukasz Waszczuk1, Konrad Kubicki1, Andrzej Kochman2, Monika Morawska-Kochman3, Marek S#siadek1.

1Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland

2Department of Orthopedic and Traumatology, The Ministry Of Internal Affairs Hospital, Wrocław, Poland

3University Hospital, Wrocław, Poland

Author’s address: Maciej Guziński, PhD MD, Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, 213 Borowska St., 50-556 Wrocław, Poland, e-mail: guziol@wp.pl
References

1.
2.
3.
5.
6.
7.