Evaluation of standardized uptake values in PET normalized using a predictive equation for lean body mass

Poster No.: C-0441
Congress: ECR 2015
Type: Scientific Exhibit
Authors: Y. Kono, K. Utsunomiya, K. Nakano, N. Tanigawa; Osaka/JP
Keywords: Nuclear medicine, Professional issues, Computer applications, PET-CT, Complications, Outcomes analysis, Biological effects
DOI: 10.1594/ecr2015/C-0441

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

Maximum standardized uptake value (SUV$_{max}$) is a commonly used as a semiquantitative parameter in PET/CT studies valuable for diagnosis of various diseases and therapy response. However, It is reported that SUV$_{max}$ is modified by various factors, differs from the true value, then it makes undervalue or overvalue patient conditions. We have experienced that SUV$_{max}$ is occasionally not useful to diagnose and compare with other patients in clinical. It was known that patient's physique make it be difficult to get true SUV$_{max}$, and it is reported to the over weight especially that SUV$_{max}$ becomes an excessive evaluation in the patient. Using lean body mass normalized SUV$_{max}$ (SUL) is weight-independent indice for FDG uptake, and SUV$_{max}$ appears to be more appropriate for quantifying FDG uptake to avoid overestimation of glucose utilization in obese patients1). Also SUL is used in the therapy evaluation in PERCIST1.0 advocated as therapy evaluation2). Moreover, a lot of methods of obtaining lean body mass (LBM) from the calculation are instituted, and the calculating formula to which Morgan DJ et al. modified the James method is adopted widely now3). Whether using the predictive equation SUV$_{max}$ (SUL$_{PE}$) could be clinical suitable or not is uncertain. The purpose of the present study is that SUV$_{max}$ obtained from the actual measurement value of the body fat scale (SUL$_S$) is defined as Golden standard, and evaluate SUL$_{PE}$ by comparing in physiological accumulation and to clarify the differences among body type in SUV$_{max}$.
Fig. 1: MIP images of a thin patient and a fatty patient. It is displayed with the same SUV range.

© Department of Radiology., Hirakata hospital, Kansai Medical University - Osaka/JP
Methods and materials

Subjects

Object were consecutive 135 patients underwent 18F-FDG-PET/CT examination for routine clinical purpose, who agreed to research, in August 2013 to March 2014. The 18F-FDG-PET/CT study has been performed for malignant discrimination; 11pts., for staging malignant disease; 47pts., for decision of treatment result; 5pts., for follow-up; 65pts., health screening; 3pts. Four patients whose blood glucose is over 150 mg/dl and/or who had multiple liver tumors were excluded. In the all patients, after over 6 hr fasting, each patient was injected with approximately 185MBq of fluorine-18 fluorodeoxyglucose (18F-FDG)(nihon mediphysics, Tokyo, Japan). Body weight, height, and body fat percentage were measured by body fat analyzer (FitScan 100, Tanita, Japan) just before the PET/CT studies. They were divided into three groups; low body mass index group (BMI #18.5), normal BMI group (BMI 18.5-25), and high BMI group(BMI #25)(Table 1). They spent complete bedrest until PET/CT scan starting after the dosage of 18F-FDG.

F-18-FDG-PET/CT Imaging

All fluorodeoxyglucose (FDG) PET/CT scans were performed from the top of the skull through the proximal femurs 60 min after F-18-FDG injection (185 MBq/body intravenously) on a Lu₂SiO₅ (4.0mm*4.0mm*20#). Emission data were collected at 2.5-3.0 min of emission per bed position on a 168 x 168 pixel matrix, using a Ge-68 source for attenuation correction and a gaussian filter of 5 mm in full width at half maximum. PET/CT studies were obtained on Siemens Biograph TruePoint 16 (Siemens Healthcare, Erlangen, Germany). SULPE and SULS were calculated using following equations:

\[\text{SUL}_{PE} = \frac{C(T)}{(D/LBM1)} \]
\[\text{SUL}_{S} = \frac{C(T)}{(D/LBM2)} \]

\(C(T) \): the total radioactivity concentration.

\(D \): injected dose (Bq).

The LBM1³) and LBM2 were calculated using the following formula:
LBM1 (Male) \(^3\) = 1.10 \times \text{weight (kg)} # 120 \times \text{weight} \div \text{height (cm)}
LBM1 (Female) \(^3\) = 1.07 \times \text{weight (kg)} # 148 \times \text{weight} \div \text{height (cm)}
LBM2 = \text{weight (kg)} \times \text{body fat percentage}

Measurements and Data Analysis

Volume of interests (VOIs) of constant size (radius: 5mm) were drawn sections of aortic arch and liver on axial CT slices (Figure 2). VOIs were drawn in the peripheral right hepatic lobe avoiding large veins or the biliary ducts. FDG uptake was measured and \(\text{SUV}_{\text{max}}\), \(\text{SUL}_{\text{S}}\), and \(\text{SUL}_{\text{PE}}\) were calculated. The differences among \(\text{SUV}_{\text{max}}\), \(\text{SUL}_{\text{S}}\), and \(\text{SUL}_{\text{PE}}\) were compared in all and for 3 groups: low BMI, normal BMI, and high BMI group. \(\text{SUV}_{\text{max}}\), \(\text{SUL}_{\text{S}}\), and \(\text{SUL}_{\text{PE}}\) were compared in all groups. Moreover \(\text{SUL}_{\text{PE}}\) average among 3 groups was compared with \(\text{SUV}_{\text{max}}\) average among 3 groups.

Statistical methods

The Wilcoxon t-test was used to compare \(\text{SUL}_{\text{S}}\) to \(\text{SUL}_{\text{PE}}\) in each groups. The non-repeated measures ANOVA test was used analyze for \(\text{SUV}_{\text{max}}, \text{SUV}_{\text{S}}, \text{and SUV}_{\text{PE}}\) each BMI groups. The level of statistical significance was \(p < 0.05\).
Table 1: Patient groups.

© Department of Radiology, Hirakata hospital, Kansai Medical University - Osaka/JP
Fig. 2: Measurement areas. VOIs (radius; 5mm) were set in the aortic arch and right lobe in liver.

© Department of Radiology, Hirakata hospital, Kansai Medical University - Osaka/JP
Results

Result
In the aortic and liver ROIs, SUV_{max} (mean±SE) were 2.04±0.29 and 2.50±0.28 in the low BMI group, 2.41±0.41 and 2.98±0.47 in the normal BMI group, and 2.71±0.28 and 3.42±0.41 in high BMI group, respectively. SUL_PE were 1.72±0.27 and 2.10±0.27 in the low BMI group, 1.90±0.35 and 2.36±0.44 in the normal BMI group, and 1.86±0.27 and 2.33±0.35 in the high BMI group, respectively. SUV_S were 1.70±0.27 and 2.07±0.28 in the low BMI group, 1.82±0.30 and 2.25±0.36 in the normal BMI group, and 1.76±0.26 and 2.23±0.35 in the high BMI group.

Table 2 shows the differences in aorta and liver SUV_{max}, SUL_S, and SUL_PE in each BMI group. The value of SUL_PE was significantly higher than that of SUL_S in total (aorta; p #0.001, liver; p #0.001). Although there is no significant difference between SUL_S and SUL_PE in the low BMI group (aorta; p =0.19, liver; p =0.17), in the normal and high BMI groups we found a significant difference between SULs and SUL_PE. The similar trend of SUL_S and SUL_PE in liver was seen.

Meanwhile, Figure 3 and 4 shows each SUV_{max}, SUL_S, and SUL_PE in aorta and liver of each BMI groups. Evaluation each group, no systematic dependence of SUVs on patient BMI was found in aorta and liver. On the other hand, in aortic SUV_PE, a significant difference was founded, but relatively small between the low BMI and normal BMI groups. As well as in hepatic SUV_PE, low BMI group was a significantly lower than normal and high BMI group, but relatively small.

However, there is distinct difference in aortic and hepatic SUV_{max} value among 3 groups. There was 27.5% difference in the aortic SUV_{max} between the low BMI group and high BMI group. As well as it was reached 31.2% in the hepatic SUV_{max}. By contrast, the difference of SUL_PE is only about 10% of mean value in the aortic and hepatic VOIs.
Table 2: SUVmax, SULS and SULPE in aorta and liver.

© Department of Radiology, Hirakata hospital, Kansai Medical University - Osaka/JP
Fig. 3: Result SUV and SUL in Aorta #P#0.05

© Department of Radiology,, Hirakata hospital, Kansai Medical University - Osaka/JP

© Department of Radiology,, Hirakata hospital, Kansai Medical University - Osaka/JP
Fig. 4: Result SUVmax, SULS and SULPE in liver. *P*<0.05

© Department of Radiology, Hirakata hospital, Kansai Medical University - Osaka/JP
Conclusion

SUV_{max} was found to be dependent on patient weight with a systematic variation of about 30% across the three categories: underweight, normal, and overweight.

SUL_{PE} should be considered as a clinical useful proxy measure of FDG uptake.
Personal information

Department of Radiology, Kansai Medical University, Hirakata, Osaka, Japan.

Author: Yumiko Kono, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan. Phone: 81-72-804-0101; Fax: 81-72-804-2072; E-mail: kohnoy@hirakata.kmu.ac.jp
References

