Low radiation and low contrast dose coronary CT angioraphy at 64-row CT: usefulness of BMI-adapted protocol and the iterative reconstruction algorithm

Poster No.: C-0746
Congress: ECR 2015
Type: Scientific Exhibit
Keywords: Radioprotection / Radiation dose, Cardiovascular system, Vascular, CT, CT-Angiography, Radiation safety, Contrast agent-intravenous, Diagnostic procedure, Cardiac Assist Devices
DOI: 10.1594/ecr2015/C-0746

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

To evaluate the effect on image quality of a low radiation dose and contrast agent dose for coronary computed tomography angiography (CCTA) using a BMI-adapted protocol and the iterative reconstruction algorithm with prospective ECG triggering.
Methods and materials

Patient preparation and CT examination

Between April and October 2014, 196 patients referred for CCTA to rule out coronary artery disease were prospectively enrolled. The exclusion criteria included: nonsinus rhythm, Heart Rate>75 bpm, a history of allergic reactions to iodinated contrast agent, renal insufficiency (creatinine level>1.7 mg/dL), hemodynamic instability or pregnancy. Oral metoprolol (25-50 mg) was administered 60 min before CCTA examination, if necessary, to achieve a heart rate <75 bpm. In addition, the measurement of body weight and height was manually performed by an investigator just before the scan.

All scans were performed prospectively ECG-triggered, using a 128-slice Brilliance iCT scanner. Patients were divided into four groups using kV/ref.mAs=80/200, 100/150, 120/150 and 140/150 when patient’s Body mass index (BMI) was #18.5 (n=21), 18.5-24.0 (n=76), 24.0-28.0 (n=64) and>28.0 (n=35), respectively. The contrast dose and flow rate was divided into 50ml/4.0 mL/s, 60ml/4.5 mL/s, 70ml/5.0 mL/s, 70ml/5.0 mL/s correspondingly. Iopamidol at 370 mg I/mL was continuously injected into an antecubital vein using a power intector. Bolus tracking was performed with a region of interest (ROI) placed into the descending aorta. Scanning was performed from below the tracheal bifurcation to the diaphragm. The other parameters used in the scan and reconstruction were the same. These parameters were as follows: slice acquisition, 64×0.625 mm; smallest x-ray window (75% of the R-R cycle); z-coverage value of 40 mm with an increment of 35 mm; gantry rotation time 350 milliseconds. All the images were post-processed with the iterative reconstruction technique.

Effective dose radiation estimation

Radiation dose parameters were recorded with volume CT Volume dose index (CTDIvol) in mGy, dose-length product (DLP) in mGy cm and effective dose (ED) in mSv. The CTDIvol and the DLP were automatically determined and recorded from the CT scanner at the end of each examination. The ED was calculated by multiplying the DLP by a conversion coefficient for the chest (k = 0.014 mSv/mGy•cm)[12].

CCTA image evaluation

All of the images were evaluated independently by two radiologists with 5 and 10 years of CCTA experience. Coronary arteries were divided into 16 segments for analysis of CCTA data as proposed by the American Heart Association. Image quality was evaluated on
a 4-point scale (1 = excellent; 2 = blurring of the vessel wall; 3 = image with artifacts but evaluative; 4 = non-evaluative).

The quantitative image quality was measured by the image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The regions of interest (ROI) was placed at the root of the ascending aorta, the proximal opening of the right coronary artery (RCA), left main artery (LMA) and the adjacent fat tissue peripheral to RCA or LMA. The size of ROI was 100 mm2 at the aorta root, and as large as possible at RCA, LMA, and perivascular fat. The calcifications, plaques, and stenoses were avoided for ROI placement. The image noise was defined as the standard deviation of ROI measurement at aorta. The contrast of RCA and LMA was the difference of CT value between the vessel lumen and the adjacent perivascular fat. The SNR was defined as average CT value divided by image noise at aorta. The CNR in RCA and LMA was defined as the contrast of RCA and LMA divided by image noise.

Statistical analysis

The statistical analysis was performed using SPSS software (IBM, SPSS statistics, version 19). The quantitative variables were expressed as mean±standard deviation and the categorical variables as frequencies or percentages. Differences between four groups were assessed by using ANOVA. A P value of < 0.05 was considered to indicate statistical significance.
Results

BMI ranged from 16.3 to 33.6 cm, the contrast dose was 50ml-70ml and the flow rate was 4.0-5.0 mL/s. Mean effective radiation dose was 0.9-3.4 mSv. The image quality scores indicated no significant difference among the four groups with regard to each score rate (all P>0.05). Image noise, vessel attenuation and SNR were higher in 80 kV and 100 kV groups than that of 120 kV and 140 kV groups (P<0.05), while CNR in RCA and LM were not significantly different among the four groups (P >0.05).
Fig. 1: 77-year-old woman with BMI of 17.9kg/m². Axial CT images obtained at 80kV/200mAs, with contrast dose of 40ml, show ascending aorta with image noise of 38.1HU and vessel attenuation of 687.6HU. Excellent image quality was obtained.

© - Lishui/CN
Fig. 2: 80-year-old woman with BMI of 23.7kg/m². Axial CT images obtained at 100kV/150mAs, with contrast dose of 45ml, show ascending aorta with image noise of 35.2HU and vessel attenuation of 558.5HU. Excellent image quality was obtained.

© - Lishui/CN
Fig. 3: 43-year-old man with BMI of 26.0kg/m². Axial CT images obtained at 120kV/150mAs, with contrast dose of 50ml, show ascending aorta with image noise of 29.3HU and vessel attenuation of 413.5HU. Excellent image quality was obtained.

© - Lishui/CN
Fig. 4: 44-year-old man with BMI of 29.4kg/m². Axial CT images obtained at 140kV/150mAs, with contrast dose of 50ml, show ascending aorta with image noise of 22.0HU and vessel attenuation of 354.9HU. Excellent image quality was obtained.

© - Lishui/CN
Conclusion

BMI-adapted protocol and the iterative reconstruction algorithm can be used for individualized radiation dose and contrast control, resulting in similar CNR and maintaining diagnostic image quality.
Personal information

Jiansong Ji

Department of Radiology

Lishui Central Hospital

Lishui Hospital of Zhejiang University.

The Fifth Affiliated Hospital of Wenzhou Medical College.

289 kuocang Rd.Lishui,Zhejiang,China.323000

Email: jjstcty@sina.com
References

