Diffusion-weighted MRI of sinonasal masses. Does bone erosion or destruction alter the ADC value in differentiating benign from malignant masses?

Poster No.: C-1264
Congress: ECR 2014
Type: Scientific Exhibit
Authors: R. K. Soliman, M. M. Osman, H. M. K. Imam; Assiut/EG
Keywords: Neoplasia, Diagnostic procedure, MR-Diffusion/Perfusion, Ear / Nose / Throat
DOI: 10.1594/ecr2014/C-1264
Aims and objectives

Introduction:

Sinonasal tumors are of low incidence. However, they typically have poor prognosis owing to their early extension to the surrounding structures, most importantly, intracranial extension. [1] A wide variety of both benign and malignant sinonasal tumors have been recorded. Differentiation between benign and malignant tumors is essential for the treatment plan. CT and conventional MRI (cMRI) are mainly used to diagnose sinonasal tumors. MRI is more useful for soft tissue characterization, whereas CT is better to assess bone involvement. Both provide useful information about tumor extension. Yet, it is not always easy to differentiate between benign malignant lesions [2-4]. Diffusion-weighted imaging (DWI) and ADC value are used to reflect tissue cellularity. Therefore, they were found to be useful in discrimination between benign and malignant neoplasm [5-8]. In sinonasal tumors, however, bone erosion and destruction are associated not only with malignant lesions but also with some benign lesions.

Aim:

Identify weather bone erosion or destruction alters the ADC value while discriminating benign from malignant sinonasal masses.
Methods and materials

Patients:

Patients presented clinically with sinonasal tumors were scanned using Low dose multi-detector CT. Only patients having sinonasal mass with bone erosion or destruction were included. Therefore a total number of 25 patients (17 males and 8 females) were enrolled in this study.

CT protocol:

Patients were scanned using spiral 16 multi-detector CT in axial section from the top of the frontal sinus till the end of the hard palate. Parameters were used: 120 KV, 40mAs, 2.5mm collimation, 3-mm slice thickness, 1.2-mm reconstruction increment, and a pitch of 1.

MRI protocol:

Patients were scanned using 1.5 Tesla MRI scanner. They were examined in supine position with standard polarized head coil. Routine MRI was performed using the following sequences: Spin echo axial T1-weighted imaging (TE/TR: 650/12 ms), axial and coronal T2-weighted imaging (TE/TR: 4800/98 ms) with slice thickness of 5mm and inter-slice gap of 1.5 m. The field of view (FOV) used was 190 x 190 mm and matrix size of 320 x 320. After intravenous administration of Gadolinium -DPTA (Gd), contrast enhanced T1WI in axial and coronal planes were obtained in 21 patients.

DWI was then performed on axial scans using single shot echo planner spin echo (EPI). The following parameters were used: (TE/TR: 6800/98 ms), with slice thickness of 5mm and inter-slice gap of 1.5 mm. The field of view (FOV) used was 250 x 250 mm and matrix size of 192 x 192.

Diffusion gradient encoding was performed in three orthogonal planes (X, Y, Z). Three b-factors (0-400-800) were obtained. ADC maps were then generated. In each patients, two regions of interest (ROI) were selected, the first ROI was drown at the area of bone erosion or destruction, whereas the second was drown at the area recorded the lowest ADC value in the lesion, away from the area of bone destruction.

For each patient, the lowest ADC reading, whether that of the first or the second ROI has been selected to represent the main ADC of the lesion (ADC_L).

Histopathological data:
Histopathological diagnosis was obtained either by biopsy or after surgical resection.

Statistical analysis:

Data analysis was performed using SPSS statistical software package. Non-parametric Mann-Whitney U tests were used to evaluate the statistical difference between ADC_L values of benign and malignant masses. Then, for each of benign and malignant masses, statistical differences between the ADC values of the selected two ROIs were calculated. P-values less than 0.05 were considered significant.
Results

Our study populations consisted of 25 patients (17 males and 8 females). Age ranged from 13 to 58 years. On the basis of histopathological diagnosis, sinonasal masses were divided into benign masses 44% and malignant tumors 56%. The distribution of pathology is shown in (Table 1)

For both benign and malignant lesions:

The mean ADC_L value of benign sinonasal lesion was 1.14 ± 0.41 x 10⁻³ mm²/s, whereas the mean ADC of malignant sinonasal lesion was 0.87 ± 0.31 x 10⁻³ mm²/s. Statistical significant difference was found between the ADC_L values of benign and malignant sinonasal masses. (P value =0.044) (Figure: 1).

In benign sinonasal masses:

The mean ADC value of the first ROI was 1.18 ± 0.45 x 10⁻³ mm²/s., whereas the mean ADC of the second ROI was 1.35 ± 0.43 x 10⁻³ mm²/s. No significant differences between mean ADC values of the first and second ROI were found (P value =0.365). (Figure: 2).

In Malignant sinonasal tumors:

The mean ADC value of the first ROI was 0.98 ± 0.36 x 10⁻³ mm²/s, whereas the mean ADC of the second ROI was 1.22 ± 0.35 x 10⁻³ mm²/s. No significant differences between mean ADC values of the first and second ROI were found (P value =0.07) (Figure: 3).
Fig. 2: Figure: 2 Box plots comparing the mean ADC values of 1) the first ROI and 2) the second ROI of benign sinonasal tumors. The horizontal thick line is the median, and the vertical lines show the full range of values in the data. No significant difference was found between the ADC values of the two ROIs.

© Diagnostic Radiology department, Faculty of Medicine, Assiut University, Assiut University Hospitals - Assiut/EG
Table (1) showing the final histopathological diagnosis of 25 patients

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory polyps</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Inverted papilloma</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mucocle</td>
<td>3</td>
<td>Benign</td>
</tr>
<tr>
<td>Fibrous Dysplasia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Juvenile angiofibroma</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>9</td>
<td>Malignant</td>
</tr>
<tr>
<td>Non–Hodgkin Lymphoma</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Olfactory neuroblastoma</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Table:1

© Diagnostic Radiology department, Faculty of Medicine, Assiut University, Assiut University Hospitals - Assiut/EG
Fig. 1: Figure: 2 Box plots comparing the mean ADCL values of 1) benign and 2) malignant sinonasal tumors. The horizontal thick line is the median, and the vertical lines show the full range of values in the data. ADCL of malignant neoplasm was significantly lower than that of benign lesions. (P value =0.044)

© Diagnostic Radiology department, Faculty of Medicine, Assiut University, Assiut University Hospitals - Assiut/EG
Fig. 3: Figure: 3 Box plots comparing the mean ADC values of 1) the first ROI and 2) the second ROI of malignant sinonasal tumors. The horizontal thick line is the median, and the vertical lines show the full range of values in the data. No significant difference was found between the ADC values of the two ROIs.

© Diagnostic Radiology department, Faculty of Medicine, Assiut University, Assiut University Hospitals - Assiut/EG
Fig. 4: Inflammatory polyp. A) Axial CT shows polypoidal thickening involving the left nasal cavity and left maxillary sinus associated with bone remolding of the upper nasal septum and left maxillary sinus. B) Axial T2WI shows polypoidal thickening in the left nasal cavity extending to the left maxillary sinus with retained maxillary secretion, eliciting high SI. C) Axial ADC map shows the ADC value of the first ROI (at the area of bone remolding) = 1.2x10^-3 mm²/s, whereas the mean ADC value of the second ROI = 1.5 10^-3 mm²/s.

© Diagnostic Radiology department, Faculty of Medicine, Assiut University, Assiut University Hospitals - Assiut/EG
Fig. 5: Sphenoid sinus mucocele. A) Coronal CT and B) Coronal T2WI show large mucocele filling and expanding the sphenoid sinus associated with destruction of the sphenoidal sinus wall. C) Axial ADC map shows the mean ADC value of the first ROI =1.4x10-3 mm²/s, whereas the mean ADC value of the second ROI =1.7 10-3 mm²/s.

© Diagnostic Radiology department, Faculty of Medicine, Assiut University, Assiut University Hospitals - Assiut/EG
Conclusion

Conclusion:

It is possible to observe similar radiological findings for benign and malignant sinonasal lesions. Therefore, their distinction may be difficult and unreliable using CT and cMRI.

In the current study, the mean ADC value of malignant sinonasal lesions was significantly lower than that of benign lesions (P= 0.04). The lower ADC value of the malignant tumors is mainly due to high tumor cellularity and reduced water content in the interstitial space [5,8, 9]. In agreement with our results, Razek et al. [4] reported a significant difference between mean ADC values of benign and malignant paranasal masses. They further found a significant difference between ADC values of different grades of malignant tumors.

Benign sinonasal lesions, that are associated with bone erosion or destruction, could be also misdiagnosed as malignant neoplasms by conventional imaging.

Our study revealed that, bone erosion or destruction does not alter the ADC value in differentiating between benign and malignant masses. As there were no significant difference between the mean ADC values between the first and the second ROI in both benign and malignant masses.

We conclude that, ADC value is a useful quantitative parameter to differentiate between benign and malignant sinonasal masses and its value does not change with bone erosion or destruction.
References: