Utilisation of combined 18F-FDG PET/CT scan for differential diagnosis between benign and malignant adrenal enlargement

Poster No.: C-0292
Congress: ECR 2014
Type: Scientific Exhibit
Authors: K. See Hyung, K. Jin Young, Y.-H. Kim; Daegu/KR
Keywords: Diagnostic procedure, PET-CT, CT, Nuclear medicine, Kidney, Abdomen, Neoplasia
DOI: 10.1594/ecr2014/C-0292

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

The adrenal gland is a common site of metastasis in patients with cancer. Up to 50% of adrenal lesions in patients with known primary non-adrenal cancers are malignant disease [1-4]. The most common malignant lesions that metastasise to the adrenal gland include lung, liver, colon, lymphoma, melanoma, breast, kidney, oesophagus, pancreas and stomach cancer [4-6]. However, diagnosis of an adrenal lesion as malignant or benign can be problematic.

Characterisation of these adrenal lesions is therefore critical to stage the primary disease, direct therapy and predict prognosis. Although CT and MRI are typically used to characterise a lesion, a small but important number of adrenal lesions are found to be indeterminate on crosssectional images [7-9].

Several reports have documented the effectiveness of standalone fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) to differentiate benign from malignant adrenal lesions [8-10]. Interest has focused on the ability of integrated in-line PET/CT to definitively characterise these lesions given that this technique combines the anatomical and densitometrical applications of CT and the functional and metabolic advantages of PET. Several studies have reported PET/CT’s high sensitivity, specificity and accuracy for detecting adrenal metastatic lesions [7-10].

PET/CT can also be used as a non-invasive method to help assess the lesion, facilitating diagnosis and treatment decisions. The purpose of our study was to investigate whether PET/CT can reliably detect differences between malignant and benign lesions, tumour characteristics associated with the location of the primary cancer and predictors for adrenal metastasis.
Methods and materials

Patient population

From January 2006 to July 2012, 325 consecutive patients had adrenal lesions as identified by an initial integrated in-line PET/CT that were diagnosed as adrenal metastasis (for those with known primary cancers) or adenoma and hyperplasia by examination 6-30 months after the initial PET/CT. The mean follow-up period was 18 months. During the follow-up period, we characterised the lesions as either benign or malignant.

Patients whose lesions were diagnosed as myelolipomas by the presence of macroscopic fat were excluded from our study, as were patients who had been treated for malignant or benign lesions in the adrenal gland, had diabetes or any other disorder affecting glucose metabolism.

PET/CT techniques

Patients fasted for at least 6 h before PET/CT. Blood glucose was measured 1 h before injection of 18F-FDG and was ideally less than 150mg dL$^{-1}$. The used 18F-FDG dose was 10-12 mCi (370-444MBq), with 1 h uptake. Imaging was acquired with an integrated in-line PET/CT system (Discovery™ ST; GE Healthcare, Waukesha, WI). Unenhanced CT from the base of the skull to the upper thigh was performed for attenuation correction and diagnosis (300mA; tube rotation time 0.5 s; 120 kVp; table speed 13.5 mm per rotation; beam collimation 831.25 mm). Axial CT images were reconstructed with a soft reconstruction kernel with a slice thickness of 3.75 mm and an interval of 3.27 mm to match the PET images.

The PET images were obtained in the two-dimensional mode for 3 min per bed position, and the images were reconstructed with standard vendor-provided reconstruction algorithms incorporating ordered subset expectation maximisation. Attenuation correction of PET images was performed with attenuation data from the CT component of the examination. The manufacturer's software was used to correct emission data for scatter, random events and dead-time losses.

PET/CT analysis

The PET/CT components were reviewed on a high-resolution workstation (Marosis; Infinity, Seoul, Republic of Korea). The PET and fused CT images were analysed in both axial and coronal planes. Two radiologists and one nuclear medicine physician reviewed the images, and decisions were reached by consensus. The CT component
measured the size of the adrenal lesion. The adrenal lesion unenhanced attenuations were measured from the unenhanced attenuation correction CT by taking the mean of two measurements from a region of interest (ROI). The ROI covered from one-half to two-thirds of the surface area of the lesion, avoiding adjacent retroperitoneal fat and inhomogeneous areas.

The PET and fused CT images were used to measure the average standardised uptake value (SUV) over an ROI placed on the liver and the adrenal lesion. The PET/CT images reconstructed in the coronal and axial planes were used to confirm accurate placement of the ROI on the adrenal gland. The ROI included at least two-thirds of the adrenal lesion. A similar-sized ROI was placed within the right hepatic lobe free from the detectable metastatic lesion. Care was taken to avoid the periphery of the lesion, thereby minimising the partial volume effect. Maximum SUV (SUV$_{\text{max}}$) and average SUV (SUV$_{\text{avg}}$) were generated by the software with the equation SUV=$C_{\text{tis}}/D_{\text{inj}}/\text{body weight}$, in which SUV is normalised for body weight in kilograms, C_{tis} is tissue concentration in megabecquerels per milliliter and D_{inj} is the injected dose in megabecquerels. The adrenal SUV$_{\text{max}}$ ratio was divided by the liver SUV$_{\text{avg}}$ to calculate a ratio (SUV$_{\text{ratio}}$) for each lesion.

Standard reference

The results of follow-up images were all used as reference standards for final characterisation of the adrenal lesion in our study. Lesions that remained stable in size for more than 6 months at follow up were considered benign. Criteria for malignancy included an interval increase in size or more than 20% decrease in size after appropriate therapy. The mean follow-up period for lesions was 18 months. As this study is a retrospective examination and analysis of the clinical data, there were a variety of follow-up methods, such as contrast-enhanced CT, MRI and PET/CT.

Statistical analysis

Age was shown as mean±standard deviation and compared between groups by independent Student’s t-test. Other categorical variables were shown as proportions, and the association between categorical variables was compared with Fisher’s exact test. The variables associated with adrenal metastasis were shown by their odds ratios with the 95% confidence interval (CI) in the univariate and multivariate logistic regression models.

The cut-off point of unenhanced attenuation (10 HU) in the prediction of adrenal metastasis was determined by the commonly accepted value for distinguishing between benignancy and malignancy, and the cut-off point of SUVmax ratio (2.5) was determined by the Youden's index (the maximum of sensitivity and specificity-1) in the receiver operating characteristic curves analysis. The variables with p-values <0.05 were included in a multivariate logistic regression model, selected by a forward conditional method. Statistical analysis was performed using appropriate software (SPSS® v. 18.0 for
Windows; SPSS, Chicago, IL). Null hypotheses of no difference were rejected if the p-value was <0.05 or, equivalently, if the 95% CI of odds ratio estimates excluded 1.
Results

Patient demography analysis

PET/CT was performed on 10,750 patients, including 3562 patients with primary cancer and 7188 patients without primary cancer. Of these, 325 patients had adrenal lesions, 229 of whom had known primary cancer and 96 of whom did not have known primary cancer. Among the 325 patients with adrenal lesions, 28 were histologically diagnosed; of these, 21 were diagnosed as having malignant lesions and the remaining 7 were diagnosed as having benign lesions.

Patients' demographics and PET/CT characteristics are summarised in Table 1 on page 10. The presence of lesions in both groups of patients was not associated with age or sex, and the majority of patients in both groups were males. Over half of the patients with primary cancer had a metastatic lesion. The types of primary cancers included lung (44.9%), gastrointestinal (13.5%), liver (10.9%) and others (30.7%).

The proportion of patients with a mass in both adrenal glands was small in both groups but was significantly higher for the patients with known primary cancer. The proportion of lesions that were nodule, hyperplasia or normal was similar in both groups. Unenhanced attenuation >10HU and SUV\(_{\text{max}}\) ratios >2.5 were significantly higher in patients with known primary cancer than in those without. More patients without known primary cancer had evidence of no \(^{18}\)F-FDG uptake.

Analysis of characteristics in patients with known primary cancer

The characteristics of patients with known primary cancer and categorisation by primary cancer types are summarised in Table 2 on page 10. Patients with adrenal metastasis were younger, more often had nodules or masses and more often both unenhanced attenuation >10 HU and an SUV\(_{\text{max}}\) ratio >2.5. As would be expected, more patients with adrenal metastasis had metastasised tumours in other parts of their body. Patients with adrenal metastasis most often had primary lung cancer and less often had primary tumours in the gastrointestinal tract and the liver. Patients without adrenal metastasis had a higher rate of gastrointestinal cancer. Those with adrenal metastasis and a gastrointestinal cancer primary were significantly younger than those without adrenal metastasis.

Univariate analysis of predictors of adrenal metastasis
The results of univariate analysis for predicting adrenal metastasis in patients with known primary cancer and categorisation by primary cancer are summarised in Table 3 on page 11. Age, presence of left and right nodules or masses, unenhanced attenuation, \(\text{SUV}_{\text{max}} \) ratio, and metastasis in other parts and locations of the primary cancer are significantly associated with adrenal metastasis. However, only age, unenhanced CT attenuation, \(\text{SUV}_{\text{max}} \) ratio and the presence of metastasis in other parts were associated with adrenal metastasis after stepwise forward selection.

The results of multivariate analysis for variables associated with adrenal metastasis are summarised in Table 4 on page 11. After controlling for the unenhanced attenuation, \(\text{SUV}_{\text{max}} \) ratio and metastasis to other parts, the risk for developing adrenal metastasis decreased slightly by each year of increasing age. Controlling for age, unenhanced attenuation and \(\text{SUV}_{\text{max}} \) ratio, patients with metastasis to other parts had a significantly higher risk of adrenal metastasis than those with no adrenal metastasis. After controlling for the other two variables, unenhanced attenuation >10HU and an \(\text{SUV}_{\text{max}} \) ratio >2.5 raised the risk of adrenal metastasis significantly. This relationship held consistently across the major sites of lung and gastrointestinal cancer, although numbers were too small for significance with liver cancer.
Fig. 1: A 39-year-old female with uterine cervical cancer. (a) The unenhanced CT scan shows a lesion measuring approximately 15mm in the left adrenal nodule (arrow) with homogeneous attenuation (22 HU). (b) On integrated PET/CT scan, the lesion shows a high 18F-FDG uptake (SUVmax ratio 4.8). (c) A high 18F-FDG uptake lesion (SUVmax ratio 5.0) is shown in the left upper lung. (d) At follow-up 8 months later after appropriate chemotherapy, integrated PET/CT scan shows interval increases in size and aggravated 18F-FDG uptake (SUVmax ratio 12.1). The left adrenal lesion did prove to be metastasis. 18F-FDG, flourine-18 fludeoxyglucose; PET, positron emission tomography; SUVmax, maximum standardised uptake value.

References: Dongsan Medical Center - Daegu/KR

Multivariate analysis of predictors of adrenal metastasis
The results of multivariate analysis for predicting adrenal metastasis in patients with known primary cancer and in patients with lung and gastrointestinal cancers are summarised in Table 5 on page 12. For patients with known primary cancer, age, unenhanced attenuation, SUV\textsubscript{max} ratio and metastasis to other parts were associated with adrenal metastasis. The highest accuracy for predicting adrenal metastasis was for the combination of "unenhanced attenuation >10 HU, SUV\textsubscript{max} ratio >2.5, metastasis to other parts or age", with 92.0%, 88.4% and 90.8% sensitivity, specificity and accuracy, respectively (Fig. 1 on page 13). The pairing of "unenhanced attenuation >10 HU or SUV\textsubscript{max} ratio >2.5" had relative lower sensitivity, specificity and accuracy than the combination of the variables. These findings held for primary site-specific analysis as well as for both lung and gastrointestinal cancer.
Table 1: Patients’ demographics and PET/CT characteristics. PET, positron emission tomography; SUVmax, maximum standardised uptake value.

© Dongsan Medical Center - Daegu/KR
Table 2: Characteristics in patients with known primary cancer and categorisation by primary cancer type. 18F-FDG, fluorine-18 fluordeoxyglucose; SUVmax, maximum standardised uptake value.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Findings</th>
<th>All patients with known primary cancer (n=229)</th>
<th>Patients with lung cancer (n=103)</th>
<th>Patients with gastrointestinal cancer (n=31)</th>
<th>Patients with liver cancer (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes (n=83)</td>
<td>No (n=146)</td>
<td>p-value</td>
<td>Yes (n=67)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>58.8±11.5</td>
<td>65.5±11.7</td>
<td>0.028</td>
<td>56.1±11.7</td>
</tr>
<tr>
<td>Left adrenal</td>
<td>Nodale or mass</td>
<td>76 (39.3%)</td>
<td>28 (23.8%)</td>
<td>0.003</td>
<td>36 (54.3%)</td>
</tr>
<tr>
<td>Right adrenal</td>
<td>Nodale or mass</td>
<td>49 (22.4%)</td>
<td>11 (14.9%)</td>
<td>0.009</td>
<td>19 (24.6%)</td>
</tr>
<tr>
<td>Unenhanced</td>
<td>≤10 HU</td>
<td>11 (8.8%)</td>
<td>11 (9.9%)</td>
<td>0.001</td>
<td>5 (9.0%)</td>
</tr>
<tr>
<td>Attenuation</td>
<td>>10 HU</td>
<td>114 (91.2%)</td>
<td>4 (11.1%)</td>
<td>0.001</td>
<td>50 (91.0%)</td>
</tr>
<tr>
<td>SUVmax ratio</td>
<td>≤2.5</td>
<td>66 (45.1%)</td>
<td>41 (52.5%)</td>
<td>0.001</td>
<td>29 (36.7%)</td>
</tr>
<tr>
<td></td>
<td>>2.5</td>
<td>30 (33.5%)</td>
<td>2 (3.1%)</td>
<td>0.001</td>
<td>32 (40.5%)</td>
</tr>
<tr>
<td>No 18F-FDG uptake</td>
<td>No</td>
<td>9 (5.9%)</td>
<td>19 (75.6%) <0.001</td>
<td>3 (3.7%)</td>
<td>15 (62.5%)</td>
</tr>
<tr>
<td>Metastasis in other parts</td>
<td>Yes</td>
<td>121 (75.9%)</td>
<td>28 (29.4%)</td>
<td><0.001</td>
<td>62 (70.6%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>58 (33.2%)</td>
<td>54 (66.6%)</td>
<td>0.001</td>
<td>17 (18.8%)</td>
</tr>
</tbody>
</table>

Primary

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Findings</th>
<th>All patients with known primary cancer (n=229)</th>
<th>Patients with lung cancer (n=103)</th>
<th>Patients with gastrointestinal cancer (n=31)</th>
<th>Patients with liver cancer (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>p-value</td>
<td>OR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>0.96 (0.94, 0.98)</td>
<td>0.024</td>
<td>0.95 (0.94, 1.00)</td>
<td>0.142</td>
</tr>
<tr>
<td>Left adrenal</td>
<td>Nodale or mass</td>
<td>2.31 (1.34, 3.95)</td>
<td>0.042</td>
<td>2.15 (0.88, 5.30)</td>
<td>0.093</td>
</tr>
<tr>
<td>Right adrenal</td>
<td>Nodale or mass</td>
<td>2.38 (1.29, 4.21)</td>
<td>0.038</td>
<td>1.35 (0.46, 3.58)</td>
<td>0.631</td>
</tr>
<tr>
<td>Unenhanced</td>
<td>≤10 HU</td>
<td>3.25 (1.54, 6.92)</td>
<td><0.001</td>
<td>2.99 (1.54, 9.06)</td>
<td><0.001</td>
</tr>
<tr>
<td>Attenuation</td>
<td>>10 HU</td>
<td>414.5 (341, 4172.1)</td>
<td><0.001</td>
<td>321.5 (121, 2095.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>SUVmax ratio</td>
<td>≤2.5</td>
<td>15.4 (6.38, 38.2)</td>
<td><0.001</td>
<td>39.4 (7.3, 210.8)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>>2.5</td>
<td>509.8 (58.2, 4215.4)</td>
<td><0.001</td>
<td>321.0 (27.2, 3712.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Metastasis in other parts</td>
<td>Yes</td>
<td>5.35 (2.05, 9.99)</td>
<td><0.001</td>
<td>5.05 (2.09, 12.51)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Primary

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Findings</th>
<th>All patients with known primary cancer (n=229)</th>
<th>Patients with lung cancer (n=103)</th>
<th>Patients with gastrointestinal cancer (n=31)</th>
<th>Patients with liver cancer (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>p-value</td>
<td>OR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Lung cancer</td>
<td></td>
<td>2.02 (1.07, 3.37)</td>
<td>0.003</td>
<td>2.02 (1.07, 3.37)</td>
<td>0.003</td>
</tr>
<tr>
<td>Gastrointestinal cancer</td>
<td></td>
<td>0.68 (0.32, 1.43)</td>
<td>0.180</td>
<td>0.68 (0.32, 1.43)</td>
<td>0.180</td>
</tr>
<tr>
<td>Liver cancer</td>
<td></td>
<td>0.71 (0.32, 1.81)</td>
<td>0.006</td>
<td>0.71 (0.32, 1.81)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

© Dongsan Medical Center - Daegu/KR

Table 3: Univariate analysis for predicting adrenal metastasis in patients with known primary cancer and categorisation by primary cancer type. NA, not applicable; OR, odds ratio; SUVmax, maximum standardised uptake value; 95% CI, confidence interval. Reference groups indicate that the corresponding variable had a significant influence on adrenal metastasis. NA indicates that the odds ratio was not performed owing to small or zero count.

© Dongsan Medical Center - Daegu/KR
Table 4: Impact variables of adrenal metastasis by multivariate analysis.

NA nor applicable; OR, odds ratio; SUVmax, maximum standardised uptake value; 95% CI, confidence interval. Reference group indicates that the corresponding variable had a significant influence on adrenal metastasis. NA indicates that the odds ratio was not performed owing to small or zero count. (a)p=0.321 in Hosmer and Lemeshow test indicates that the multivariate model fit well. (b)p=0.686 in Hosmer and Lemeshow test indicates that the multivariate model fit well. (C)p=0.136 in Hosmer and Lemeshow test indicates that the multivariate model fit well.

© Dongsan Medical Center - Daegu/KR

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Findings</th>
<th>All patients with known primary tumour<sup>a</sup> (n=229)</th>
<th>Patients with lung cancer<sup>a</sup> (n=103)</th>
<th>Patients with gastrointestinal cancer<sup>a</sup> (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>p-value</td>
<td>OR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.97 (0.94, 0.99)</td>
<td>0.021</td>
<td>NA</td>
<td>0.87 (0.78, 1.00)</td>
</tr>
<tr>
<td>Unenhanced attenuation</td>
<td>>10HU</td>
<td>2.62 (1.23, 5.53)</td>
<td><0.001</td>
<td>2.10 (1.24, 3.76)</td>
</tr>
<tr>
<td>Attenuation</td>
<td>≥10HU</td>
<td>39.6 (29.8, 323.2)</td>
<td><0.001</td>
<td>278.3 (16.9, 4238.8)</td>
</tr>
<tr>
<td>SUV<sub>max</sub> ratio</td>
<td>≥2.5</td>
<td>13.9 (1.3, 36.8)</td>
<td><0.001</td>
<td>35.8 (5.3, 194.6)</td>
</tr>
<tr>
<td></td>
<td>>2.5</td>
<td>471.5 (55.9, 4240.2)</td>
<td><0.001</td>
<td>310.7 (28.4, 3750.7)</td>
</tr>
<tr>
<td>Metastasis in other parts</td>
<td>Yes</td>
<td>4.41 (1.74, 9.22)</td>
<td><0.001</td>
<td>4.07 (1.04, 14.23)</td>
</tr>
</tbody>
</table>

© Dongsan Medical Center - Daegu/KR
Table 5: The sensitivity, specificity, PPV and NPV of combining variables in the prediction for adrenal metastasis. NPV, negative predictive value; PPV, positive predictive value; SUVmax, maximum standardised uptake value.

© Dongsan Medical Center - Daegu/KR

![Fig. 1](image1)

Fig. 1: A 39-year-old female with uterine cervical cancer. (a) The unenhanced CT scan shows a lesion measuring approximately 15mm in the left adrenal nodule (arrow) with homogeneous attenuation (22 HU). (b) On integrated PET/CT scan, the lesion shows a high 18F-FDG uptake (SUVmax ratio 4.8). (c) A high 18F-FDG uptake lesion (SUVmax ratio 5.0) is shown in the left upper lung. (d) At follow-up 8 months later after appropriate chemotherapy, integrated PET/CT scan shows interval increases in size and aggravated
18F-FDG uptake (SUVmax ratio 12.1). The left adrenal lesion did prove to be metastasis. 18F-FDG, fluorine-18 fludeoxyglucose; PET, positron emission tomography; SUVmax, maximum standardised uptake value.

© Dongsan Medical Center - Daegu/KR
Conclusion

Our retrospective study used PET/CT to assess the characteristics of adrenal lesions in patients with known primary cancer and without primary cancer. Once an adrenal lesion has been detected in patients with cancer, its characterisation is critical to stage the primary disease. The most common clinical conundrum is to differentiate benign non-functioning lesions from metastatic lesions. Patients with known primary cancer were more likely to have an adrenal metastatic lesion than patients with no primary tumour. The risk of adrenal metastases is very low in patients with no history of primary cancer. Song et al [11] reported that a study of 1049 consecutive incidental adrenal masses in patients with no history of cancer did not find a single malignancy.

Imaging techniques to differentiate these lesions must be as close to 100% specific as possible so as not to risk making a diagnosis of benignancy in error [12]. The unenhanced CT and contrast-enhanced CT washout study and chemical shift MRI meet these principles [13-17]. The use of an integrated PET/CT enables confident localisation and characterisation of adrenal lesions [18]. Unenhanced attenuation data from an integrated PET/CT can characterise most benign adenomas given that the 10-HU threshold to differentiate benign from indeterminate lesions has been firmly established in clinical practice [19-23]. The use of a 10-HU threshold brings the sensitivity up to 79% and decreases the specificity to 96% [13,16,23]. The integrated PET/CT is useful in cases in which the adrenal lesion has metabolic activity equal to or less than the background activity. Bagheri et al [24] found that 68% of normal adrenal glands had increased 18F-FDG activity compared with the background and that identification of adrenal glands was difficult with PET alone. Metser et al [20] suggested using an SUV$_{max}$ of 3.1 for detecting malignant adrenal lesions.

The combination of unenhanced CT and SUV$_{max}$ ratio is highly accurate in distinguishing between benign and malignant adrenal lesions [25]. In our study, applying the suggested unenhanced attenuation and SUV$_{max}$ ratio cut-off values of 10 HU and 2.5, respectively, substantially increased the accuracy of the test and would have decreased the number of false-positive results. Our study found that PET/CT was efficient in differentiating between benign and malignant adrenal lesions. Our study found that approximately 40% of patients with primary cancer did not have a malignant adrenal lesion, similar to previous reports [26]. Moreover, adrenal lesions in patients without primary cancer were all benign or owing to hyperplasia, consistent with the low frequency (approximately 10%) of primary adrenal tumours [26]. Of the patients without known primary cancer, 8.4% had an unenhanced attenuation of >10HU and 3.1% had an SUV$_{max}$ ratio of >2.5. Of the patients with known primary cancer but no adrenal metastasis, 11.1% had unenhanced attenuation of >10HU and 2.1% had an SUV$_{max}$ ratio of >2.5.
Among patients with known primary cancer, metastatic tumours were predominantly
found in the left adrenal gland (50.3% of patients). Generally, left adrenal lesions such
as nodules or hyperplasia were overrepresented [27]. This may have been owing to
developmental differences between the left and right adrenal glands, such as different
anatomical positioning and formation of the asymmetrical mass. Also, liver SUV_{avg}
likely had no effect on our results, as the difference in the means of liver SUV_{avg}
was small and would have had minimal impact on a calculated SUV ratio.

Many malignant lesions are capable of adrenal gland metastasis [10]. In our study,
the most common primary cancer was lung (44.9%). Our study was performed with
a heterogeneous group of patients with all types of malignant diseases. It may be
that groups of patients with lung, gastrointestinal and liver cancer are more likely to
have adrenal metastasis than are group of patients with different cancers, potentially
introducing interpreter bias. The majority of patients with adrenal metastasis also
had metastatic cancer in other body parts (73.5%), especially patients with primary
gastrointestinal cancer (84.6%). These results were consistent with the fact that patients
in our study who had adrenal metastasis had advanced cancer.

Univariate analysis revealed that age, unenhanced attenuation, SUVmax ratio and the
presence of metastasis in other parts were independent predictors for adrenal metastasis
in patients with known primary cancer. The risk of adrenal metastasis from known
primary cancer decreased with every increasing year of age. The same variables, except
age, were associated with adrenal metastasis in patients with lung and gastrointestinal
cancer. Multivariate analysis revealed that in patients with primary cancer, unenhanced
attenuation >10 HU, an SUV_{max} ratio >2.5 and the presence of metastasis in other parts
yielded high sensitivity, specificity and accuracy for predicting adrenal metastasis. For
patients with gastrointestinal cancer, unenhanced attenuation >10HU and an SUV_{max}
ratio >2.5 were the best combination of sensitivity, specificity and accuracy for predicting
adrenal metastasis.

Our study had a few important limitations. First, like many similar studies, it was
conducted retrospectively. Second, we used follow-up data to determine the nature of
the adrenal lesions because we had pathological proof for only a few patients. However,
this situation is reflective of current practice. Most adrenal nodules are characterised with
either follow-up data or imaging, and biopsy is reserved for a few selected indeterminate
lesions. Third, our analysis was quantitative. It can be argued as to whether quantitative
or qualitative methods are more effective in distinguishing between malignant and benign
adrenal lesions. Finally, the population of the study was small (n=325), and patients
with lung cancer accounted for roughly 50% of our population. Therefore, the findings
of the total population with known primary cancers may reflect the characteristics of a
lung cancer population. Larger scaled studies including sizable populations representing
multiple primary cancer types are needed to more fully assess the variables that predict
adrenal metastasis.
In conclusion, on the basis of all our findings, we conclude that PET/CT is useful for characterising adrenal lesions present with or without known primary cancers. We identified variables that may be useful in assessing the risk of developing adrenal metastasis. PET/CT may help the clinician in diagnosis and in determining the optimal treatment strategies in patients with cancer.
Personal information

Kim See Hyung

Department of Radiology, Dongsan Hospital, Keimyung University, Daegu, Republic of Korea.

kseehdr@dsmc.or.kr

Kim Jin Young

Department of Radiology, Dongsan Hospital, Keimyung University, Daegu, Republic of Korea.

Kim Young-hwan

Department of Radiology, Dongsan Hospital, Keimyung University, Daegu, Republic of Korea.
References

