The blocking stone minimally invasive removal from CBD, pancreatic duct and ureter: balloon assisted percutaneal descending litholapaxy (BAPDL)

Poster No.: C-1391
Congress: ECR 2014
Type: Scientific Exhibit
Authors: M. Mizandari1, N. Habib2; 1Tbilisi/GE, 2London/UK
Keywords: Interventional non-vascular, Biliary Tract / Gallbladder, Urinary Tract / Bladder, Percutaneous, Digital radiography, Catheters, Contrast agent-other, Dilation, Dilatation, Fistula
DOI: 10.1594/ecr2014/C-1391

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

The management of blocking stones in CBD, ureter and Wirsung duct represents an important problem of abdominal surgery and urology. The common approach was the surgical removal of the blocking stones. Starting from the eighties of the last century several low-invasive techniques have been implemented in clinical practice for CBD and ureteral stone management - laparascopic surgery, percutaneal lithotripsy (1), stone retrieval under combined endoscopy-fluoroscopy (3; 5) or just endoscopy guidance using retrograde approach, stent placement and Endoscopic Papillary Large Balloon Dilatation for Bile Duct Stone Removal (2 ; 9). The low-invasive management of Wirsung duct stones suggests the stone removal via papilla, using retrograde approach (4; 8).

It should be mentioned, that the significance of percutaneal drainage, as a low-invasive management option of the complications, caused by presence of blocking stones in CBD, ureter and Wirsung duct (jaundice&cholangitis, hydro&pyonephrosis, pancreatitis) is increasingly growing with the improvement of drainage technique&devices. The percutaneal drainage can easily eliminate the clinical findings of above mentioned complications in few days. The drainage fistula, formed after percutaneal drainage enables to perform any subsequent manipulations on drained duct easily, facilitating the advancement of the needed devices, enabling the drainage catheter easy postprocedure reposition in order to minimize the risk of possible complications.

All above mentioned gave the impulse for seeking of new techniques and possibilities for CBD, ureter and Wirsung duct blocking stone percutaneal antegrade management trying to descend the stone down using the fistula of preliminarily performed percutaneal drainage. We failed to find publications on such approach to the problem in ureteral and Wirsung duct stone management; we found 2 publications on CBD stone descending (into the duodenum) removal using the antegrade approach; one paper reports the case of residual CBD stone removal into the duodenum using 5 mm balloon via post-surgery T-tube (7), the second (6) reports bile duct stone evacuation in series of 261 patients with or without preliminary lithotripsy (lithotripsy is applied to the the stones larger than 15 mm) with overall success rate 95.7% and major complication in 6.8%.

The purpose of our paper is to present the novel technique of balloon assisted percutaneal descending litholapaxy to CBD, ureter and Wirsung duct blocking stones.
Methods and materials

14 patients (CBD stones - 11, Ureteral stones - 2, pancreatic duct stones -1) with blocked duct underwent balloon assisted percutaneal descending litholapaxy (BAPDL). The stone size varied from 5 to 23 mm; all patients were referred for external drainage to treat the complications of bile duct, Wirsung duct or ureter stone induced block - jaundice & cholangitis, pancreatitis, hydro-pyonephrosis. In all cases the percutaneal drainage has been performed and decision to perform BAPDL has been made after the elimination of the clinic of above mentioned complications, which took 1 to 3 weeks. The drainage fistula, formed during this time facilitates the BAPDL procedure, enabling to conduct all devices smoothly and painlessly. BAPDL procedure is performed under the conscious sedation using real-time fluoroscopy guidance. The consequence of actions is as follows - fistulography is performed via the drainage catheter, 0.035 inch diameter guidewire is introduced and catheter is withdrawn; the introducer sheath of appropriate diameter (6 to 11 Fr) is introduced and 5 Fr guiding catheter is advanced in order to manipulate the guidewire down, passing the blocking stone - this is an absolutely obligatory step. When successfully introduced, the guidewire may need the documentation of its adequate position by guiding catheter advancement and contrast injection. After this the heavy duty guidewire is advanced into the duodenum or the bladder via the guiding catheter and the appropriate size balloon device (6 to 20 mm diameter) is introduced into the sphincter (Papilla of Vater or ureteral orifice) according this guidewire - this enables to dilate the sphincter and the duct segment below the stone. After dilation the balloon is deflated and moved up, above the blocking stone, where it's inflated again and multiple pushing actions are applied to the blocking stone under the real-time fluoroscopy control. Use of an introducer sheath and a heavy duty guidewire enables to conduct strong pushing effort, when the balloon strongly pushes and the wire guides the stone down. The contrast injection documents the duct/ureter clearance. By the end of procedure the drainage catheter is repositioned and is kept closed to maintain the access in case of any problem. The drainage catheter is usually withdrawn in a week after the BAPDL.
Images for this section:

Stones in distal CBD (arrows)

Venous contrast

Contrast injected via PTC catheter

Fig. 1: Patient#1. CBD BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
BAPDL procedure to CBD blocking stones

Fig. 2: Patient#1. CBD BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
BAPDL procedure to CBD blocking stones – stone evacuation process (yellow arrows – stones, red arrows – pushing balloon)

Fig. 3: Patient#1. CBD BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
BAPDL procedure to CBD blocking stones

Fig. 4: Patient#1. CBD BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Results

BAPDL enabled to descend the blocking stones in all cases; in the case of wirsungolithiasis 8 of 9 stones were evacuated; we failed to evacuate 1 stone, which was imbedded and non-blocking. In 9 cases (85.7%) stones were pushed down successfully at the first attempt as documented on post-procedure fistulography; in 1 (0.9%) case of multiple CBD stones and the case of multiple wirsungolithiasis(0.9%) two BAPDL procedures were needed to get the positive result; this was the same and only patient, on whom the third procedure was also performed, but it failed to remove the imbedded and non-blocking Wirsung duct stone. Mild hematuria was documented in one patient with ureteral stones, no other complications were observed.
Urethral stones - arrows

10 mm balloon is inflated in urethral orifice

Fig. 5: Patient #2. Ureteral BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Urethral BAPDL procedure (arrows identify the balloon)

Fig. 6: Patient #2. Ureteral BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Urethral BAPDL procedure (arrow identifies the balloon)

Fig. 7: Patient #2. Ureteral BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Fig. 8: Patient #2. Ureteral BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Conclusion

BAPDL is friendly technique, easy to perform and easy to tolerate. It should be mentioned, that BAPDL might be easily combined with contact lithotripsy, although we had no need of this in our series. The maximal size of evacuated CBD stone was 23 mm - this shows the high effectiveness of the technique inspite of the small amount of patients in series. The advantage of this technique in biliary or Wirsung duct patients is a lack of need of cutting alteration of Papilla and the possibility to perform the low-invasive stone removal in cases with previously performed gastric resection. BAPDL after preliminarily performed percutaneal drainage is safe and effective and should be routinely used in selected patients as an alternative for stone retrograde evacuation techniques; it should be recommended as a first choice option in patients to whom percutaneal drainage has been already performed.
MRCP – arrows identify defects of filling in the Wirsung duct (stones)

Fig. 9: Patient #3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
CT after wirsungostomy – the countable stones in distal duct (yellow arrows); stones/calcifications in pancreatic tail (red arrows); opacified Wirsung duct & duodenum (blue arrows) after contrast injection via wirsungostomy catheter

Fig. 10: Patient #3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Pancreatic BAPDL procedure – papilla dilatation

Fig. 11: Patient #3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Fig. 13: Patient #3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
CT control after the third BAPDL procedure – one embedded, non blocking stone is still seen (yellow arrow). Pancreatic tail stones/calcifications – red arrows

Fig. 14: Patient #3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Fig. 15: Patient #3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
Fig. 12: Patient#3. Wirsung duct BAPDL

© Diagnostic&Interventional Radiology, University Clinic - Tbilisi/GE
References

1. Aboumarzouk OM, Kata SG, Keeley FX, McClinton S, Nabi G

2. Akira Horiuchi, MD, Yoshiko Nakayama, MD, Masashi Kajiyama, MD, Naoyuki Kato, MD, Tetsuya Kamijima, MD, David Y. Graham, MD, Naoki Tanaka, MD,

Biliary stenting in the management of large or multiple common bile duct stones. Gastrointest Endosc 2010;71:1200-3

3. Hemal AK, Goel A, Goel R

4. Kazuo Inui Junji Yoshino Hironao Miyoshi

Percutaneous Transhepatic Removal of Bile Duct Stones: Results of 261 Patients. Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 201110.1007/s00270-011-0197-8

7. S. Fataar, F.R.C.R.* H. Bassiony, F.R.C.R.* T. Abou-Neema, M.D.,

The percutaneous "stretch and push" technique for removing retained biliary calculi

8. Takahiro Nakazawa, Kazuki Hayashi, Itaru Naitoh, Fumihiro Okumura and Takashi Joh
Endoscopic Approach via the Minor Papilla for the Treatment of Pancreatic Stones
Clin Endosc 2012;45:189-193

9. Young Hoon Youn, Hyun Chul Lim, Jae Hoon Jahng, Sung Il Jang, Jung Hwan You,
Jung Soo Park, Se Joon Lee, Dong Ki Lee
The Increase in Balloon Size to Over 15 mm Does Not Affect the Development of
Pancreatitis After Endoscopic Papillary Large Balloon Dilatation for Bile Duct Stone
Removal. Gastrointest Endosc 2010;71:1200-3