MRI HASTE diffusion in the investigation of limb infection: a safe quick method for identifying surgically relevant collections

Poster No.: C-1233
Congress: ECR 2014
Type: Scientific Exhibit
Authors: D. Amiras, C. Welman, N. Wambeek, B. Wood; Perth/AU
Keywords: Musculoskeletal bone, Musculoskeletal joint, Musculoskeletal soft tissue, MR-Diffusion/Perfusion, MR, Surgery, Infection, Abscess
DOI: 10.1594/ecr2014/C-1233

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

Limb infection can lead to septicemia, limb loss and death. Early infection including osteomyelitis may be treated medically[1], [2], however the presence of necrosis or an abscess is an indication for early invasive management [3], [4].

Traditionally a walled off collection was identified by demonstrating a thick enhancing wall by the administration of gadolinium on either T1 or fat suppressed T1 sequences[5].

However many of the patients susceptible to these infections have co existent diabetes, up to 82% in one series [6]. The increase risk of retroperitoneal fibrosis with the administration of gadolinium in the presence of renal impairment has been recognised[7] and for this reason intravenous gadolinium is often withheld for the investigation of distal limb infection in the presence of chronic renal failure.

The sensitivity of diffusion weighting imaging (DWI) for identifying collections has been established in the setting of soft tissue infection[8], [9]. However artefacts from bone/air interfaces are common with echo planar imaging (EPI) based DWI.

Half-Fourier acquisition single-shot turbo spin- echo diffusion weighted imaging (HASTE DWI) a turbo spin echo technique, has been used in the temporal bones successfully to identify densely cellular cholesteatomas [10]. Non EPI DWI has recently shown high specificity and sensitivity in the investigation of cholesteatoma in the middle ear[11-13].

To our knowledge HASTE DWI has not previously been applied to identify intra-osseous, soft tissue and intra-articular collections in suspected cases of infection.
Methods and materials

Retrospective analysis was performed on 93 MRI referrals for presumed foot or ankle infection. Clinical follow up was performed for all cases. The sensitivity and specificity of HASTE DWI to identify collections was compared to post contrast imaging in addition to clinical follow up. All cases with surgical debridement had tissue sent for microbiology.

Patients

From January 2011 to March 2013, 93 MRIs have been included in our database. The database collated information on clinical, radiological, microbiological and surgical findings where available. 21 patients did not have gadolinium administered due to GFR <30mls. 67 of 93 were diabetic and 87 had a clinical ulcer identified by the referring team.

Imaging Technique

MR imaging was performed with a 1.5T (Magnetom Avanto, Siemens, Erlangen, Germany) MRI scanner utilising an 8-channel foot/ankle coil.

T1 and T2 fat saturated (STIR when appropriate), sagittal, coronal and axial images were acquired pre contrast administration. This was followed by three plane T1FS following intravenous injection (when clinically suitable) of 0.1 mmol/kg body weight of gadopentate dimeglumine (Magnevist, Schering, Berlin, Germany). Finally, sagittal and axial diffusion weighted images were obtained with Half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences. Slice thickness is 5mm with a voxel size of 1.6*1.3*5mm (axial), 2.1*1.7*5mm (sagittal) and a b value of 1000 s/mm².

Imaging Evaluation

A single evaluator, reviewed images with 3 years experience in musculoskeletal MRI. The criteria for diagnosis of collection were high signal intensity on the fluid weighted sequences with corresponding high signal on the TSE HASTE DW MRI sequence.
Results

HASTE DWI MRI detected and precisely localised collections in 42 patients, 29 of which were treated surgically and the remainder treated conservatively with IV antibiotics (fig 1-9.)

HASTE DWI failed to detect collections in 4 patients. These patients had collections that were too small to demonstrate separate from presumed artefact. Three studies suggested collections on the DWI studies which were later shown to be otherwise, one case of acute gout, mid foot arthralgia and one case demonstrated presumed focal acute muscle denervation.

HASTE DWI detected collections that were not identified by post contrast images in 2 cases, one was a superficial thin walled abscess which demonstrated pus at theatre and a second collection was demonstrated at the base of the 5th metatarsal which did not demonstrate restricted diffusion.

The false negatives were felt to be due mostly due to incomplete fat suppression and the subsequent loss of conspicuity of small peripheral lesions in the forefoot.

In our study HASTE DWI when combined with T1 and STIR sequences was shown to have a specificity of 92\% and sensitivity of 91\% for intra-articular, soft tissue and osseous collections when compared to clinical follow up and surgical findings.
Fig. 1: Axial T1 shows evidence of cortical erosion and reactive oedema and osteomyelitis.

© radiology, Fremantle Hospital - Perth/AU
Fig. 2: HASTE DWI axial image of patient from Fig 1 with hyperintense focus representing focal abscess (arrow.)

© radiology, Fremantle Hospital - Perth/AU
Fig. 3: Corresponding T1 FS post contrast image from Fig 1 heel ulcer with focal abscess (arrow) and evidence of necrosis.

© radiology, Fremantle Hospital - Perth/AU
Fig. 4: A distal fibular subperiosteal abscess with sinus bone tract and medullary abscess demonstrated as an area of hyperintense focus on HASTE DWI.

© radiology, Fremantle Hospital - Perth/AU
Fig. 5: Focus of restricted diffusion in the second metatarsal phalangeal joint in keeping with septic arthritis (arrow.)

© radiology, Fremantle Hospital - Perth/AU
Fig. 6: HASTE DWI sagittal image demonstrating focal collection in the small muscles in the forefoot.

© radiology, Fremantle Hospital - Perth/AU
Fig. 8: AXIAL STIR demonstrating high signal in the flexor tendons of the third and forth toes.

© radiology, Fremantle Hospital - Perth/AU
Fig. 9: Axial HASTE DWI corresponding image from Fig 8 demonstrating restricted diffusion in the flexor tendons previously mentioned. The restricted diffusion is highly suggestive of septic tenosynovitis.

© radiology, Fremantle Hospital - Perth/AU
<table>
<thead>
<tr>
<th>Surgical follow up</th>
<th>No collection on HASTE DWI</th>
<th>Collection on HASTE DWI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection</td>
<td>4</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>No collection</td>
<td>45</td>
<td>3</td>
<td>48</td>
</tr>
</tbody>
</table>

Fig. 10: Summary of results, HASTE DWI vs surgical follow up.

© radiology, Fremantle Hospital - Perth/AU
Conclusion

This initial study demonstrates that HASTE DWI can identify collections in the foot and ankle to a similar sensitivity and specificity to contrast enhanced sequences with the advantage of reduced scanner time, cost and increased patient safety.
Personal information

Dr Dimitri Amiras FRCR
Radiology Department Fremantle Hospital, Fremantle, Western Australia, Australia.
Drdimi@gmail.com

Chris J Welman FRANZCR
Radiology Department Fremantle Hospital, Fremantle, Western Australia, Australia.

Nick D Wambeek FRANZCR
Radiology Department Fremantle Hospital, Fremantle, Western Australia, Australia.

Brad M Wood FRANZCR
Radiology Department Fremantle Hospital, Fremantle, Western Australia, Australia.
References

