Proton resonance frequency thermometry to analyse red blood cell warm-up from 1°C to 10°C: appraisal of the '30 minutes rule in transfusion medicine'

Poster No.: C-1043
Congress: ECR 2013
Type: Scientific Exhibit
Authors: U. Reiter¹, G. Reiter¹, T. Wagner¹, N. Kozma¹, J. Roland², H. Schoellnast¹, F. Ebner¹, G. Lanzer¹, Graz/AT, Erlangen/DE
Keywords: MR physics, Haematologic, MR, Physics, Experimental investigations, Health policy and practice, Blood
DOI: 10.1594/ECR2013/C-1043

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

Storage and transport of human red blood cell concentrate (RBC) is subject of a variety of laws and regulations whereas temperature is a key measure in RBC quality control. According to international guidelines, RBC should be stored at 1°C - 6°C and must not exceed 10°C during transport [1-3]. Once exceeded, units must be used or discharged. Definition of time RBC units can be exposed to ambient temperature without exceeding the recommended temperature limit of 10°C, commonly roughly estimated applying the "30 minute rule", challenges the investigation of the three-dimensional temperature distribution of RBC during warming.

Since thermal warming is not a spontaneous but complex multifactorial, three-dimensional process, previous studies applying thermocouple data loggers to investigate RBC warm up processes are mainly limited due to the invasive, one-dimensional nature of data acquisition, data-logger positioning and dimension, uncontrolled RBC unit geometry, ambient room temperature fluctuations as well as lack of repeatability of settings [5, 9-11]. Magnetic resonance (MR) thermometry represents a unique tool for non-invasive, contactless, three-dimensional assessment of thermal processes. Temperature monitoring is feasible with various temperature sensitive MR parameters. Proton resonance frequency (PRF) temperature mapping is the method of choice for fast, stable and accurate temperature measurements [17-19].

The purpose of the present study was to use PRF thermometry to measure the three-dimensional temperature distribution in RBC withdrawn from refrigerated storage (1°C - 6°C) and exposed to ambient temperature (21.25°C) to investigate the times when RBC surface, core and mean temperature exceed 10°C and if respective times correlate with each other to critically review the applicability of the "30-minutes rule" as appropriate estimate for RBC temperature not exceeding 10°C.
Methods and Materials

RBC sample collection

65 samples (12 units for calibration and 53 RBC units investigated by PRF thermometry) of outdated or unaccepted for transfusion re-suspended RBCs were used within the study. Whole blood donations were obtained according to the Austrian regulations for blood donation from healthy volunteer blood donors after informed written consent and collected into triple bags (LCR5 filtration set) containing 63 ml citrate phosphate dextrose (MacoPharma LAB, Pharmaceutiques, Tourcoing, France). After centrifugation at 4000·g for 10 min at 20°C, RBC and plasma were separated from buffy coat fraction and transferred into satellite containers using an automated separator (Compomat G4, NPBI, Amsterdam, Netherlands). Within 30 min after separation RBC was leukoreduced using the LCR5 leukoreduction filter (MacoPharma LAB, Pharmaceutiques, Tourcoing, France) and re-suspended in 100 ml of saline adenine glucose mannitol (SAGM containing 900 mg of glucose monohydrate, 877 mg of sodium chloride, 525 mg of mannitol and 16.9 mg of adenine).

Proton resonance frequency coefficient of RBC

RBC proton resonance frequency (PRF) thermal coefficient was derived from calibration measurements. A calibration unit (refer to Figure 1) build-up of RBC, a reference bulb thermometer (Ludwig Schneider Messtechnik, Germany, overall accuracy ± 0.2°C) and a reference phantom (5 g agar solved in 500 ml water) kept at ambient temperature to measure phase drifts was positioned in a 1.5T MR system (Siemens Magnetom Espree, Germany), centered in a 12 channel matrix head coil.
Fig. 1: Proton resonance frequency thermal coefficient measurement setup. 220 ml of refrigerated stored red blood cell concentrate (RBC) filled in a mountable plastic cup is positioned in the calibration unit (RBC-CU) adapted with an alcohol thermometer (T) and a reference phantom (RTI) kept at room temperature throughout experiments. The RP was placed in a plastic frame next to the RBC sample (A). For measurements the RBC-CU was positioned in the center of the matrix head coil (MHC) in the isocenter of the MRT system (B).

References: Department of Radiology, Medical University of Graz - Graz/AT

Measurements were performed using a 2D multislice gradient echo (GRE) sequence (TR = 33.15 ms, TE = 20 ms, flip angle = 14°, voxel size = 1.1×1.1×7.5 mm³, FoV = 170×170 cm², BW = 65 Hz/Pix, number of slices = 7, data acquisition time = 38 s) covering the thermometer tip with gapless transversal slices (refer to Figure 2). After acquisition of reference images, difference phase images and thermometer reference temperatures were measured with 3 min pause time for RBC temperatures between 1°C - 18°C.
Fig. 2: Proton resonance frequency thermal coefficient measurements. Sagittal TSE scout (A), coronal EPI magnitude (B) and phase (C) images showing red blood cell concentrate (RBC) and a reference phantom (RP). The slice containing the thermometer bulb was evaluated (indicated as yellow line) by drawing regions of interest in RBC (ROI_RBC) and the preference phantom (ROI_RP).

References: Department of Radiology, Medical University of Graz - Graz/AT

RBC proton resonance frequency thermal coefficient analysis

Temperature induced phase shifts were obtained as differences between means of phase changes of RBC located around the thermometer tip during warm up and means of reference phantom phases. \(\#_{\text{RBC}} \) was determined for each calibration measurement series from linear fit of resultant phase differences \(\# \) as function of temperature \(T \) between 1 and 18°C according to

\[
\alpha_{\text{RBC}} = \frac{1}{2\pi \cdot \gamma \cdot B_0 \cdot TE} \frac{d\phi}{dT}
\]

Table 1: [17]

References: Department of Radiology, Medical University of Graz - Graz/AT

where \(\# \) is the gyromagnetic ratio of \(^1\text{H}\) nuclei, \(B_0 \) the main magnetic field strength and \(d\# /dT \) the slope of the respective fit.

RBC temperature mapping

RBC temperature images were acquired with a 2D multislice gradient echo sequence (TR = 33.15 ms, TE = 20 ms, flip angle = 14°, voxel size = 1.1×1.1×7.5 mm\(^3\), FoV = 170×170 cm\(^2\), BW = 65 Hz/Pixel, number of slices = 7, data acquisition time = 38 s) covering the entire RBC volume with equidistant slices (gap = 90%-95%) for a total investigation time of 69.7 min.

RBC image analysis
MR images were transformed to RBC temperature maps by dedicated software developed in Matlab (R2010b. The MathWorks Inc. Natick, Massachusetts) employing a PRF thermal coefficient of RBC derived from calibration measurements. RBC unit height, width (w_{pouch}) and center (c_{RBC}) were determined from the central slice (refer to Figure 3). Thermal RBC core (RBC_{core}) was defined as region with minimum temperature in the central slice throughout warm up. Its position was specified as relative distance from c_{RBC}. RBC mean temperature T_{mean}, associated with the thermal state of RBC after "gently mixing", was calculated as mean value of temperatures measured in the entire RBC volume at a specific time during warm up. As the excess of 10°C was studied, the following times were derived from temperature maps: t_{mean} was the time when T_{mean} exceeded 10°C, t_{surface} the time when RBC volume started to exceed 10°C and t_{core} was the time when 100% of RBC volume exceeded 10°C.

Fig. 3: RBC unit height (h), width (w_{pouch}) and geometric center (c_{RBC}) were determined from the central slice. Thermal RBC core (RBC_{core}) was defined as region with minimum temperature in the central slice throughout warm up. Its position was specified as relative distance from RBC pouch center c_{RBC} (A). Discrete time course of RBC volume fraction (rel vol_{RBC}) during warm up was interpolated by cubic splines (solid line). To circumvent noise effects, slope at half maximum was used to calculate the times t_{surface} and t_{core} when RBC volume starts to exceed 10°C and when 100% of RBC volume has exceeded 10°C, respectively (B).

References: Department of Radiology, Medical University of Graz - Graz/AT
Fig. 1: Proton resonance frequency thermal coefficient measurement setup. 220 ml of refrigerated stored red blood cell concentrate (RBC) filled in a mountable plastic cup is positioned in the calibration unit (RBC-CU) adapted with an alcohol thermometer (T) and a reference phantom (RTI) kept at room temperature throughout experiments. The RP was placed in a plastic frame next to the RBC sample (A). For measurements the RBC-CU was positioned in the center of the matrix head coil (MHC) in the isocenter of the MRT system (B).

© Department of Radiology, Medical University of Graz - Graz/AT

Fig. 2: Proton resonance frequency thermal coefficient measurements. Sagittal TSE scout (A), coronal EPI magnitude (B) and phase (C) images showing red blood cell concentrate (RBC) and a reference phantom (RP). The slice containing the thermometer
Fig. 3: RBC unit height (h), width (w_pouch) and geometric center (c_RBC) were determined from the central slice. Thermal RBC core (RBCcore) was defined as region with minimum temperature in the central slice throughout warm up. Its position was specified as relative distance from RBC pouch center c_RBC (A). Discrete time course of RBC volume fraction (rel vol_RBC) during warm up was interpolated by cubic splines (solid line). To circumvent noise effects, slope at half maximum was used to calculate the times tsurface and tcore when RBC volume starts to exceed 10°C and when 100% of RBC volume has exceeded 10°C, respectively (B).

© Department of Radiology, Medical University of Graz - Graz/AT
Results

RBC proton resonance frequency thermal coefficient

Linear correlation between RBC phase differences and temperature changes was close to perfect (mean correlation coefficient 0.999 ± 0.001). Mean PRF thermal coefficient of RBC derived as average of 12 calibration measurements was $#_{RBC} = 1.05 \times 10^{-8} \, ^\circ C^{-1} \pm 0.02 \times 10^{-8} \, ^\circ C^{-1}$.

RBC warm up temperature distributions

During warm up, heat was continuously transferred from RBC surface to the adjacent layers, causing a non-uniform temperature distribution in the sample with isotherms located symmetrically around RBC$^{\text{core}}$ in both transversal (horizontal and latitudinal) extensions of the sample. In vertical extension RBC$^{\text{core}}$ was displaced by 13% ± 4% from pouch center. Means of times when mean, surface and core temperatures exceed 10°C were 24 min ± 5 min, 16 min ± 4 min and 36 min ± 7 min, respectively (refer to Figure 4).
Fig. 4: Average times of 53 RBC samples investigated by PRF thermometry when mean, surface and core temperatures exceed 10°C.

References: Department of Radiology, Medical University of Graz - Graz/AT

All times significantly depended on T_{storage} and w_{pouch} (refer to Figure 5). Dependence of times when mean, surface and core temperatures exceed 10°C on RBC volumes ($R^2 = 0.84, 0.81$ and 0.75 for $t_{\text{mean}}, t_{\text{surface}}$ and t_{core} respectively) was smaller than on w_{pouch}.
Fig. 5: Scatter plot of measured times when RBC mean temperature (A) surface temperature (B) and RBC core (C) exceed 10°C depending on storage temperature $T_{storage}$ of the respective RBC. Straight lines are fits derived from bilinear regression analysis for minimal, mean and maximal sample RBC pouch widths w_{pouch}.

Use of surface and core measurements for prediction

Times when mean, surface and core temperatures exceed 10°C strongly correlated with each other (refer to Figure 6). Slightly broader prediction bands of $t_{surface}$ were related to a moderate dependence of residuals on w_{pouch} ($r = 0.35$ for correlation with t_{mean} and t_{core}). Mean temperatures at $t_{surface}$ and t_{core} were $T_{mean}(t_{surface}) = 8.1°C \pm 0.4°C$ and $T_{mean}(t_{core}) = 12.2°C \pm 0.4°C$. At both times T_{mean} correlated with $T_{storage}$ ($r = 0.61$, $p < 0.0001$ for $t_{surface}$ and $r = -0.58$, $p < 0.0001$ for t_{core}): Whereat $T_{mean}(t_{surface})$ increased with $T_{storage}$ according to $T_{mean}(t_{surface}) = 7.4 + 0.18 \times T_{storage}$, $T_{mean}(t_{core})$ decreased with $T_{storage}$ according to $T_{mean}(t_{core}) = 12.8°C - 0.17 \times T_{storage}$.
Fig. 6: Scatter plot and linear regression lines together with 95% prediction bands of \(t_{\text{mean}} \) versus \(t_{\text{surface}} \) (A), \(t_{\text{core}} \) versus \(t_{\text{surface}} \) (B) and \(t_{\text{mean}} \) versus \(t_{\text{core}} \) (C). Regression equations are understood with times in minutes, temperatures in °C and pouch width in cm.

References: Reiter U et al. (2013) Four-dimensional temperature distributions in red blood cells withdrawn from storage and exposed to ambient temperature: a magnetic resonance thermometry study. Transfusion 53(1):167-73.
Fig. 4: Average times of 53 RBC samples investigated by PRF thermometry when mean, surface and core temperatures exceed 10°C.

© Department of Radiology, Medical University of Graz - Graz/AT
Fig. 5: Scatter plot of measured times when RBC mean temperature (A) surface temperature (B) and RBC core (C) exceed 10°C depending on storage temperature T_{storage} of the respective RBC. Straight lines are fits derived from bilinear regression analysis for minimal, mean and maximal sample RBC pouch widths w_{pouch}.

Fig. 6: Scatter plot and linear regression lines together with 95% prediction bands of t_{mean} versus t_{surface} (A), t_{core} versus t_{surface} (B) and t_{mean} versus t_{core} (C). Regression equations are understood with times in minutes, temperatures in °C and pouch width in cm.

Conclusion

The "30-minutes rule in transfusion medicine" is an appropriate estimate for RBC core temperature not exceeding 10°C. RBC mean and surface temperatures, however, exceed 10°C usually earlier.
References

9. Perry HE, Prasad P, Kirwan S, Huang YQ. Core temperature changes in resuspended red blood cells (RBCs) and pediatric RBCs removed from refrigerated storage. Transfusion. 2010;50(1):174-177.

Personal Information

Ursula Reiter PhD, Division of General Radiology, Department of Radiology, Medical University of Graz, Austria;
ursula.reiter@klinikum-graz.at.

Gert Reiter PhD, Siemens AG, Healthcare Sector, Graz, Austria;
gert.reiter@siemens.com.

Thomas Wagner MD, Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Austria;
thomas.wagner@medunigraz.at.

Noemi Kozma MD, Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Austria;
noemi.kozma@medunigraz.at.

Jörg Roland PhD, Siemens AG, Healthcare Sector, Erlangen, Germany;
joerg.roland@siemens.com.

Helmut Schöllnast MD, Division of General Radiology, Department of Radiology, Medical University of Graz, Austria;
helmut.schoellnast@medunigraz.at.

Franz Ebner MD, Division of Magnetic Resonance, Department of Radiology, Medical University of Graz, Austria;
franz.ebner@klinikum-graz.at.

Gerhard Lanzer MD, Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Austria;
gerhard.lanzer@klinikum-graz.at.