Yttrium-90 radiotherapy dosing calculator: Improving a liver tumor treatment process with a mobile application

Poster No.: C-0082
Congress: ECR 2013
Type: Educational Exhibit
Authors: L. Gjestebly¹, M. Lin², N. Bhagat¹, V. Tacher¹, J.-F. Geschwind¹; ¹Baltimore, MD/US, ²Briarcliff Manor, NY/US
Keywords: Image guided radiotherapy, Radioembolisation, Dosimetry, Fluoroscopy, Cone beam CT, Nuclear medicine, Liver
DOI: 10.1594/ecr2013/C-0082

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Learning objectives

There are two main objectives that this poster aims to accomplish related to Yttrium-90 (TheraSpheres®, Nordion, Ottawa, ON, Canada) transcatheter radioembolization liver tumor treatment:

1. To describe the need for a more customizable tool to improve workflow in dosimetry calculations.

2. To highlight advantages of a mobile application that calculates precise dose activity sizes and corresponding administration times, and can be easily shared among team members involved in the radioembolization procedure.
Background

Yttrium-90 radioembolization is an emerging interventional oncology therapy option. Treatment success involves proper calculation of dose activity sizes and administration time schedules. The current manufacturer dosing calculation software (Fig. 1 on page 4) takes inputs of target dose to be delivered and patient characteristics, i.e. liver volume and lung shunt fraction. The software then outputs an array of dose-delivered values corresponding to specific days and times [1]. There are several limitations of this system:

1. The times displayed for treatment each day are limited to 4-hour increments between 8am and 8pm.

2. Analogous dose-delivered values often do not exactly match with the target radiation dose required for successful treatment.

3. There is no feature that allows the input of a desired treatment time to output a corresponding custom dose activity size.

As a result, interpolation is necessary to estimate the Y-90 administration time that yields the appropriate radiation dose. In addition, the software is bound to a computer, which limits accessibility and mobility. To improve workflow in the dosimetry process, a more customizable calculation program was developed as a mobile device application.

Programming of the app was done in Objective-C using Xcode/iOS developer (Apple Computers, Cupertino, CA, USA). Primary use of the application is on iPhone® and iPad® devices. Algorithms are based on open-source software and literature provided by Nordion, Inc. The application was tested in the iOS Simulator and user feedback was obtained from radiologists, engineers, and nuclear medicine specialists.
Fig. 1: Current manufacturer (Nordion) dosing calculation software

© TheraSphere Yttrium-90 Glass Microsphere Treatment Window Illustrator. Nordion Inc., Ottawa, Ontario, Canada
Imaging findings OR Procedure details

Two main features of the mobile application provide precision and customization:

- Input of desired Y-90 administration time to determine the exact dose activity size required to yield the intended radiation dose.
- Input of a custom dose activity size to calculate the specific treatment day and time so that target radiation dose is delivered.

The following is an outline of the iOS app:

1. Upon launching the app, the main screen displays as shown in Fig. 2 on page 6. The medical professional can view instructions on how to operate the app with step-by-step directions by clicking the info button in the bottom right corner. This displays the info screen as seen in Fig. 3 on page 6.

2. To calculate the dosing, on the main screen, the patient characteristics must be inputted. These include the radiation dose to be delivered, the lung shunt fraction, and the target liver volume of the patient. A sample case is shown in Fig. 4 on page 7.

3. Next, the medical professional can choose either of the following: A) set a desired day and time for Y-90 administration or B) set a custom dose activity size to be used for the treatment (in GBq). Below is a description for options A and B.

4. Option A: When the "Set Day and Time" button is selected, the app prompts selection of the desired Y-90 administration day and time on scroll wheels. Fig. 5 on page 8 shows a sample case. The output screen will display the calculations of the precise dose activity size needed to yield the target radiation dose at the selected day and time. In addition, alternative administration times, corresponding to two of the standard dose activity sizes (3, 5, 7, 10, 15, or 20 GBq) closest to the calculated dose activity size, are also calculated. These outputs are illustrated in Fig. 6 on page 9.

5. Option B: When the "Set Custom GBq" button is selected, the app prompts input of a custom dose activity size to be used in the treatment. Fig. 7 on page 10 shows a sample case. The output screen will display the appropriate day and time to administer Y-90 so that the target radiation dose is delivered based on the custom dose activity size. Alternative administration times, corresponding to the two standard dose activity sizes closest to the input custom dose activity size, are also calculated. Fig. 8 on page 11 exemplifies these outputs.
Fig. 2: Main screen on startup

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Fig. 3: Info screen

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Fig. 4: Input of patient characteristics

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Fig. 5: Input of day and time

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Fig. 6: Output screen from day and time input

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Fig. 7: Input of custom dose activity size

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Fig. 8: Output screen from input of custom dose activity size

© The Russell H. Morgan Department of Radiology and Radiological Science Division of Vascular and Interventional Radiology, The Johns Hopkins Hospital - Baltimore/US
Conclusion

This dosing calculator provides a customizable, user-friendly tool to improve workflow and mobility in the Yttrium-90 treatment process. The app allows versatility in the dosimetry procedure with the ability to calculate administration schedules from standard and custom dose activity inputs, as well as suggest dose activity sizes corresponding to a desired day and time for the procedure. This software can improve the workflow of daily tasks for medical professionals involved in Y-90 radioembolization liver tumor treatment.
References

1. TheraSphere Yttrium-90 Glass Microsphere Treatment Window Illustrator. Nordion Inc., Ottawa, Ontario, Canada
Personal Information

Lars Gjesteby. Email: GJESTL@rpi.edu

Russell H. Morgan Department of Radiology and Radiological Science
Division of Vascular and Interventional Radiology
The Johns Hopkins Hospital
Baltimore, MD, USA

MingDe Lin, PhD. Email: ming.lin@philips.com

Clinical Informatics, Interventional, and Translational Solutions (CIITS)
Philips Research North America
Briarcliff Manor, NY, USA