Review of the use of pelvic MRI in the evaluation of adnexal non-neoplastic diseases.

Poster No.: C-1950
Congress: ECR 2012
Type: Educational Exhibit
Keywords: Neoplasia, Outcomes analysis, Observer performance, MR, Pelvis, Genital / Reproductive system female
DOI: 10.1594/ecr2012/C-1950

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Learning objectives

The purposes of the exhibit is:

• Describe the features of adnexal non-neoplastic diseases found in pelvic MRI.
• Justifying the use of this method in the evaluation of these lesions and the main differential diagnoses, using current techniques and advanced MRI sequences.
Background

- Many adnexal lesions can be assessed clinically and conducted using ultrasound, but the multiplanar capability of MRI, the quality of images obtained and the fact of not being dependent on the observer, especially in cases of complicated differential diagnosis between benign and malignant, make MRI pelvis an important method in evaluating these lesions.
- Many diseases, benign and malignant non-expanding also involve the ovary with hydrosalpinx, endometriosis, and pelvic peritoneal metastases, inclusion cyst, and are not classified as mass lesions.
- Magnetic resonance imaging (MRI) has emerged for several years as the imaging examination of second-line indications in the majority of female pelvic imaging, after ultrasonography and provides the anatomical aspects of adnexal pathologies, plus the signal characteristics, type of contrast enhancement and relations with adjacent structures.
- Recently the technique of diffusion MRI is used for the diagnosis of malignant lesions with high cellularity.
Imaging findings OR Procedure details

- Describe the main adnexal non-neoplastic evaluated by MRI such as paraovarian cyst, polycystic ovaries, ovarian stimulate to fertility treatments, endometriomas and others.
- Present the specific aspects and the signs characterizes of its own, the contrast enhancement, and anatomic relations.
- Demonstrate the value of diffusion sequences and additional findings in this lesions.

Paraovarian cyst:

- Paraovarian cysts are not ovarian masses but arise from mesothelial, paramesonephric (müllerian), or mesonephric (wolffian) structures.
- They usually occur in the mesosalpinx between the ovary and fallopian tube, so that cystic masses close to the ipsilateral round ligament can be demonstrated at MR imaging.
- Most paraovarian cysts were homogeneous cystic masses near the ipsilateral round ligament and the uterus.
- Demonstration of a normal ipsilateral ovary close to, but separated from, the adnexal cyst may be an important MR finding for the diagnosis of paraovarian cysts.

Unilocular cystic masses:

- Functional cysts, paraovarian cysts, hydrosalpinx, and serous cystadenomas usually appear as unilocular cystic masses. They are well-circumscribed cystic masses.
- In uncomplicated cases, they have low signal intensity on T1-weighted images and high signal intensity on T2-weighted images.
- Functional cysts almost always regress within 2 months. Therefore, the cysts require follow-ups over several months. Sometimes these cysts are complicated by rupture and cause abdominal pain and hemoperitoneum.

Hydrosalpinx:

- Hydrosalpinx is a common adnexal lesion that may occur either in isolation or as a component of a complex pathologic process (eg, pelvic inflammatory disease, endometriosis, fallopian tube tumor, or tubal pregnancy) that leads to distal tubal occlusion.
- Hydrosalpinx-when large enough-may also mimic a cystic ovarian tumor. Typically, dilated fallopian tubes appear as fluid-filled structures that are sausage-shaped and/or C- or S-shaped when viewed in multiple planes.
Although hydrosalpinx is most often seen on ultrasonographic images, it also may be delineated on multiplanar MR images. MR imaging also may be useful for determining the cause of a hydrosalpinx or its associated adnexal process by characterizing the nature of the contents of the dilated tube. Understanding the pathogenesis and clinical manifestations of conditions associated with hydrosalpinx may aid in the timely diagnosis of complex adnexal masses at MR imaging, enabling avoidance of unnecessary procedures.

Endometriomas:

- Endometriosis is characterized by the presence of tissue resembling endometrium outside the uterus.
- Endometriotic cysts usually have a thick fibrotic wall with chocolate-colored hemorrhagic material.
- MR imaging findings for ovarian endometriotic cysts are: adnexal cysts of high signal intensity on both T1- and T2-weighted images or high signal intensity on T1-weighted images and low signal intensity on T2-weighted images (shading).
 Methemoglobin causes T1 shortening. Chronic cyclic hemorrhage and high viscosity of the contents in the endometriotic cysts cause T2 shortening and produce shading.
- Besides endometriotic cysts, however, hemorrhagic adnexal processes includes functional cysts, abscess, hematosalpinx, and ovarian neoplasms.

Massive Ovarian Edema:

- partial or intermitent torsion leading to venous and lymphatic obstruction with subsequent ovarian enlargement
- enlarged ovary with edematous appearance and peripheral follicles
- location : right 75%, predisposition of the ovary may be due to elevated right ovarian pressure relative to the left reducing the tolerance of the right ovary to parcial torsion ; bilateral 15%
- morphology ovoid shape , massive enlarged ovary
- presence of blood flow does not exclude the diagnosis of massive ovarian edema

Pathology:

- partial or intermitent torsion
- idiopathic attributes massive ovarian edema to recurrent partial torsion of the meso-ovarium
- obstruction to the venous and lymphatic return
- evidence of torsion is found only in half of the cases
- secondary theory attributes massive ovarian edema to underlying processes such as stromal hyperplasia or hyperthecosis facilitate torsion of an abnormally enlarged ovary

Diffusion-weighted imaging (DWI):

- The addition of diffusion sequences to a conventional MR imaging protocol improved the diagnostic accuracy in the characterization of complex adnexal masses.
- On DWI, high signal intensity was observed more often in malignant than in benign lesions.
- DW imaging showed abnormal signal intensity in the thickened fallopian tube and in the wall of cystic ovarian lesions. These findings would be feasible to diagnose adnexal torsion. Early diagnosis of ovarian torsion can help prevent irreversible damage to the adnexal structures in women desiring to maintain fertility.
Fig. 1: Paraovarian cysts on the right.

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Fig. 2: Endometriotic cysts on right. High signal intensity on T1-weighted fat sat images and low signal intensity on T2-weighted images

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Fig. 3: Functional cysts.

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Fig. 4: Hydrosalpinx. Dilated fallopian tubes appear as fluid-filled structures that are sausage-shaped.

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Fig. 5: Massive Ovarian Edema. Intermittent pelvic pain. Enlarged ovary with edematous appearance and peripheral follicles. T2 weighted sequences (with and without fat sat).

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Fig. 6: Same case fig 5: sagittal and coronal planes. Note the compression of the uterus by the adnexal lesion.

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Fig. 7: Same case fig 5,6: T1 FAT SAT: Discrete peripheral enhancement after intravenous administration of paramagnetic contrast.

© Radiology, HUAP/UFF (Federal Fluminense University) - Niterói - Rio de Janeiro/BR
Conclusion

- Our study evaluates adnexal non-neoplastic diseases, with its characteristic features in pelvic MRI and demonstrates the importance of this method in the differential diagnosis for lesions described.
- Inclusion of MRI in the diagnostic algorithm of the indeterminate adnexal mass allows better differentiation of ovarian lesions resulting in a change of therapeutic decision-making with net cost savings.
References

2. Chassang M; Novellas S; Baudin G; Delotte J; Mialon O; Bongain A; Chevallier P. [Contribution of new MRI sequences in the exploration of the pelvic gynaecological disease]. J Gynecol Obstet Biol Reprod (Paris);40(5):399-406, 2011 Sep.

3. Bakir B; Bakan S; Tunaci M; Bakir VL; iyibozkurt AC; Berkman S; Bengisu E; Salmasioglu A. Diffusion-weighted imaging of solid or predominantly solid gynaecological adnexal masses: is it useful in the differential diagnosis? Br J Radiol ;84(1003):600 11, 2011 Jul.

9. Spencer JA; Forstner R; Cunha TM; Kinkel K; ESUR Female Imaging Sub-Committee.

 ESUR guidelines for MR imaging of the sonographically indeterminate adnexal mass: an algorithmic approach.
