A computerized system for identifying osteoporotic patients on dental panoramic radiographs

Poster No.: C-1110
Congress: ECR 2012
Type: Scientific Exhibit
Keywords: Osteoporosis, Screening, Computer Applications-Detection, diagnosis, CAD, Image manipulation / Reconstruction, Digital radiography, Head and neck, Computer applications, Bones
DOI: 10.1594/ecr2012/C-1110

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

Osteoporosis is a disease of bones that leads to an increased risk of fracture, and its early detection is a key to preventing future fractures and disability. To date, some screening methods for the identification of osteoporotic patients have conducted.

However, some papers indicate that osteoporosis screening rates remain low [1, 2]. In addition, osteoporosis is a silent disease with few symptoms in its early stage. For that reason, the identification of osteoporotic patients is still a challenging task. To overcome these problems, Dr. Taguchi proposed a new screening pathway via dental clinics [3] (Fig. 1 on page 3).

Panoramic radiography is widely used in clinical dentistry. Findings of panoramic images have shown that mental index (MI), which is the mean width of the lower border cortex below the two mental foramina, may be useful as the radiomorphometric indicator of possible osteoporotic patients (Fig. 2 on page 3). As shown in Fig. 2 on page 3, decrease in the cortical thickness is one of radiographic signs of osteoporosis. Therefore, the MI measurement could be used for screening osteoporosis.

Until now, two clinical trials by trained dentists have been conducted in Japan [4, 5]. These trials suggested that the preliminary screening by dentists was useful for identifying osteoporotic patients. However, there are some specialized fields in dentistry such as dental radiologist, dental surgeon, endodontist, exodontist, and so on. I mean, not all dental practitioners are familiar with image interpretation.

Computer-aided detection (CAD) may be useful for such dental practitioners. Although some CAD schemes were designed [6-9], no CAD systems have been put to practical use to date.

Purpose of this study was

- to develop a CAD system for the measurement of the MI on the panoramic radiographs
- to evaluate its clinical usefulness
Fig. 1: Screening pathway for identifying patients with osteoporosis.

© Department of Intelligent Image Information, Gifu University - Gifu/JP

Fig. 2: Examples of the measurement of mental index (MI) on panoramic images.

© Department of Intelligent Image Information, Gifu University - Gifu/JP
Methods and Materials

A new screening pathway via dental clinics

A new screening pathway in collaboration with radiologists, dentists, and computers is presented in Fig. 3 on page 6. It works as follows:

1. Panoramic radiographs are used to examine dental diseases in the routine work, as usual.
2. Dentists send the images to the CAD system as an extra task.
3. Once upon receiving the images, our CAD system automatically runs the image analysis, and the resulted images and reports are sent to dentists.
4. With reference to the CAD results, the dentists do the preliminary screening of osteoporosis.
5. The dentists provide an information about the risk of osteoporosis to patients.
6. If the patients desire, the dentists will refer to the medical clinics.

Our CAD system for the MI measurement on panoramic images

The following steps were implemented to develop a CAD system.

• Design of the computerized scheme for the MI measurement
• Development of the application software

Step 1. Design of the computerized scheme for the MI measurement

Fig. 4 on page 6 shows a computerized scheme we designed. Details on our scheme were described in [10]. The outline of our scheme was as follows.

1. The mandibular contour is the key structure on the panoramic radiography. It is extracted by use of image processing techniques such as edge detection and pattern matching.
2. Regions of Interest (ROI) associated with mental foramina are set on the basis of the mandibular contour.
3. The value of the MI is determined based on the grayscale profile on ROI.

These processings were integrated as one DLL module.

Step 2. Development of the application software

Fig. 5 on page 7 illustrates a prototype CAD system we developed. It is an application software with a simple interface, which is called "Dental Viewer". The "Dental Viewer"
can run on a general personal computer (Fig. 6 on page 8). Dentists can use our scheme easily by use of this software. Usage of this software is shown as follows.

1. Click-hold on the panoramic image and drag-and-drop it anywhere on the screen of this software. In a moment, it is registered in a database.
2. Select target images from a database, and then click the "Run" button. Soon after, the target images are processed by our scheme, and the results will be produced after about 1 minute per case.
3. You can check the MI of the target images by viewing the CAD results. When click on the result image, you can also check the intermediate process.
Fig. 3: A new screening pathway in collaboration with radiologists, dentists, and computers.

© Department of Intelligent Image Information, Gifu University - Gifu/JP
Fig. 4: A computerized scheme that measures the MI on panoramic images.

© Department of Intelligent Image Information, Gifu University - Gifu/JP
Fig. 5: Application software "Dental Viewer".

© Department of Intelligent Image Information, Gifu University - Gifu/JP

Fig. 6: Examples of our prototype CAD system in which "Dental Viewer" was installed.

© Department of Intelligent Image Information, Gifu University - Gifu/JP
Results

Performance evaluation by use of a private dataset

Panoramic images were taken with the standard positioning of the head such that the Frankfort horizontal plane was used as a reference line. The automatic mode was used to control the x-ray exposure. The resultant DICOM images were stored on a computer. Test cases were selected at random. In this way, 27 osteoporotic cases and 73 control cases were included in the dataset. Note that dual-energy X-ray absorptiometry (DXA) scan was also used to provide the evidence of osteoporosis.

Such dataset was used to evaluate the performance of our CAD system. Fig. 7 on page 11 shows a receiver operating characteristic (ROC) curve. Area under the curve (AUC) was 0.946. When threshold length of the MI was set to 2.8 mm, True positive fraction (TPF) and false positive fraction (FPF) were 0.901 and 0.169, respectively.

Multi-institutional clinical trial by dental practitioners

In collaboration with Gifu Prefecture Dental Association, multi-institutional clinical trial was conducted. 5 dental practitioners were joined in this trial and 223 cases were processed by our system. Measurement results are shown in Fig. 8 on page 11. When threshold length of the MI was set to 2.8 mm, all suspected cases were detected and specificity was 81.3 %.

Discussions

Advantages

10 million panoramic images are obtained per year in Japan. It's a very large resource. That's why preliminary examination by dental practitioners has a potential to accelerate early detection of osteoporosis.

To date, 4 asymptomatic patients with suspected osteoporosis were detected in our initial trial. It was suggested that our new screening pathway was useful to identify osteoporotic patients.

Limitations

Digital panoramic scanners are rapidly spreading in dental clinics.
As it stands now, there are large variations in the image quality of panoramic images. Fig. 9 on page 12 shows some image examples of the large variations in image quality. It should be noted that such variations lead to poor performance of the CAD system.
Fig. 7: Receiver operating characteristic (ROC) curve of our CAD system by use of the private dataset.

© Department of Intelligent Image Information, Gifu University - Gifu/JP
Fig. 8: Measurement results of the MI at the multi-institutional clinical trials.

© Department of Intelligent Image Information, Gifu University - Gifu/JP

Fig. 9: Image examples of the large variations in image quality.

© Department of Intelligent Image Information, Gifu University - Gifu/JP
Conclusion

A CAD system for measuring MI on panoramic radiography was developed. Our initial clinical trials revealed that our new screening pathway could identify asymptomatic patients with osteoporosis. Development of the algorithm that reduces the image-quality variation in panoramic images is needed to improve the performance of our CAD system.
References

Personal Information

T Hayashi, PhD¹, T Matsumoto, BS¹, T Hara, PhD¹, A Katsumata, DDS, PhD², C Muramatsu, PhD¹, X Zhou, PhD¹, Y Iida, DDS, PhD², M Matsuoka, DDS, PhD², H Fujita, PhD¹

¹ Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Graduate School of Medicine#Gifu University, Gifu / JP

² Department of Oral Radiology, Asahi University School of Dentistry, Gifu / JP

Research Grant:

Ministry of Education, Culture, Sports, Science, and Technology Regional Innovation Cluster Program (City Area Type) in Southern Gifu Area, Japan

Corresponding Author:

Tatsuro Hayashi, PhD

Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Graduate School of Medicine#Gifu University, Gifu / JP

1-1 Yanagido, Gifu / Japan

Tel.: +81 58 230 6515

Web: http://www.fjt.info.gifu-u.ac.jp/

Mail to: hayashi@fjt.info.gifu-u.ac.jp