Pancreatic exocrine function can predict cardiac iron in patients with iron overload and thalassemia

Poster No.: C-1540
Congress: ECR 2011
Type: Scientific Paper
Authors: J. Yamamura¹, R. Grosse¹, C. Pfeifer¹, B. P. Schönnagel¹, A. Jarisch², G. E. Janka¹, P. Nielsen¹, G. Adam¹, R. Fischer³;
¹Hamburg/DE, ²Frankfurt am Main/DE, ³Oakland, CA/US
Keywords: Abdomen, Pancreas, Haematologic, MR, MR-Functional imaging, Laboratory tests, Diagnostic procedure, Blood, Haematologic diseases
DOI: 10.1594/ecr2011/C-1540

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Purpose

A significant but loose correlation was found between cardiac and pancreatic T2* relaxation times (2), however, in thalassemia patients with impaired function the association with endocrine function tests is spoiled by fatty infiltration of the pancreas. A decreased pancreatic exocrine function with subnormal serum amylase and lipase levels was found to be associated with pancreatic MRI signal-to-fat ratio in TM patients (3).

The purpose of this study was to measure R2* relaxation rates in the septum by MRI in comparison with the exocrine pancreatic function by means of serum pancreatic enzyme determination in patients with β-thalassemia.
Methods and Materials

All patients gave their written informed consent.

27 transfusion dependent TM patients (age 11 - 47 years, 9 females), had measurements of heart iron by ECG gated single breathhold multi-echo MRI-R2*, liver iron by biosusceptometry and pancreatic exocrine function by serum amylase (PAM) and lipase (LIP).

17 other patients with iron overload due to blood transfusion and iron loading (MDS, AML, SCD, DBA, CDA: n = 12, and HFE-associated hereditary hemochromatosis, non-transfused thalassemia intermedia: n = 5, respectively) were also investigated. Most patients (91%) were on long-term chelation or phlebotomy treatment. The selection of patients for cardiac MRI was based on elevated LIC with actual LIC > 700 µg/g liver (about 4.2 mg/g dry wgt) for 90% of patients.

Heart iron was assessed as transverse relaxation rate R2* by a mono-exponential fit to the averaged signal amplitudes in the septum with constant signal level offset (TE = 1.3 - 25.5 ms, #t = 2.8 ms, TR = 244 ms, FA = 20°) (Fig. 1). In-vivo liver iron concentration (LIC) was measured by SQUID biomagnetic liver susceptibility as described elsewhere (4).

Pancreatic serum amylase and lipase were measured in blood samples taken at the day of blood transfusion with a detection threshold of < 13 U/L (i.e. 12.9; normal range: 13 - 53 and 13 - 60 U/L, respectively).
Figure 1: Short Axis View of the Heart: The R2* is measured within the septum.

Fig. 0: Figure 1: Short Axis View of the Heart: The R2* is measured within the septum

© Diagnostic Radiology, University Medical Center Hamburg-Eppendorf - Hamburg/DE
Results

The relationship between cardiac R_2^* and pancreatic lipase for patients with β-thalassemia major (LIC = 597 - 9454 µg/g liver) and other patients with iron overload (LIC = 200 - 7681 µg/g liver) is shown in Fig. 2. For receiver operated characteristic (ROC) analysis, patients were divided in two groups (Fig. 3) with cardiac R_2^* < 50 s$^{-1}$ or T_2^* > 20 ms (range 23 - 49 s$^{-1}$) and R_2^* > 50 s$^{-1}$ (range 51 - 387 s$^{-1}$) (see Table 1).

There was a highly significant correlation between LIP and PAM (spearman rank correlation $R_S = 0.70$, $p < 10^{-4}$). Lipase significantly correlated with R_2^* ($R_S = -0.45$, $p = 0.0023$), while amylase only showed a negative trend ($R_S = -0.29$, $p = 0.057$). No significant correlation ($p > 0.2$) was observed with any other parameter (age, LIC, ferritin).

ROC analysis for correctly classifying patients with and without cardiac iron by pancreatic amylase revealed a significant discriminatory power (ROC curve area = 0.80, $p < 10^{-4}$) and equal true positive (sensitivity) and negative (specificity) rates of 75% at a cut-off level of 19 U/L.

An even better discrimination was found for the pancreatic LIP (ROC curve area = 0.88, $p < 10^{-4}$, sensitivity = specificity = 82% at a cut-off level of 18 U/L). A similar discrimination was achieved in patients with thalassemia major (ROC curve area = 0.89). In contrast, LIC could not predict cardiac iron (ROC curve area = 0.60, $p = 0.13$).

In Figure 2, the one misclassified hemochromatosis patient with LIP < 13 U/L and R_2^* = 40 s$^{-1}$ had also an PAM level < 13 U/L and distinct cardiac siderosis in hypertrophic myocytes had been demonstrated by myocardial biopsy in the past. On the other hand, the 3 patients with R_2^* > 50 s$^{-1}$ but LIP > 19 U/L, had PAM levels < 23 U/L. With the addition of pancreatic amylase in patients with LIP # 19 U/L, cardiac iron (R_2^* > 50 s$^{-1}$) could be predicted to 67% also in these patients at a cut-off level of PAM < 23 U/L (ROC curve area = 0.83, $p < 10^{-3}$).
Fig. 2: Relationship between cardiac mid-papillary septal $R2^*$ (upper normal $R2^* < 50$ s$^{-1}$ or $T2^* > 20$ ms) and pancreatic serum lipase (lower normal cut-off level < 19 U/L) in 27 transfusion dependent β-thalassemia major patients (solid circles) and in 17 patients with iron overload due to blood transfusion or iron loading diseases (open squares).

Fig. 0: Fig. 2: Relationship between cardiac mid-papillary septal $R2^*$ (upper normal $R2^* < 50$ s$^{-1}$ or $T2^* > 20$ ms) and pancreatic serum lipase (lower normal cut-off level < 19 U/L) in 27 transfusion dependent b-thalassemia major patients (solid circles) and in 17 patients with iron overload due to blood transfusion or iron loading diseases (open squares).

© Diagnostic Radiology, University Medical Center Hamburg-Eppendorf - Hamburg/DE
Figure 3: The Patients are divided in two groups: One with and the other Without cardiac iron measured with R2*.

For ROC analysis, patients divided in 2 groups

- cardiac R2* < 50 s⁻¹ or T2* > 20 ms (range 23 – 49 s⁻¹) = no iron
- cardiac R2* > 50 s⁻¹ or T2* < 20 ms (range 51 – 387 s⁻¹) = iron

Fig. 0: Figure 3: The Patients are divided in two groups: One with and the other Without cardiac iron measured with R2*.

© Diagnostic Radiology, University Medical Center Hamburg-Eppendorf - Hamburg/DE
Table 1.
Characteristics of patients with cardiac $R^*_2 < 50 \text{ s}^{-1}$ ($T2^*_c > 20 \text{ ms}$) and $R^*_2 > 50 \text{ s}^{-1}$: median values (range) and significance of differences (Wilcoxon-Mann-Whitney U-test) between patient groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$R^*_2 < 50 \text{ s}^{-1}$</th>
<th>$R^*_2 > 50 \text{ s}^{-1}$</th>
<th>p (U-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>28</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Diabetes (m/n)</td>
<td>3 / 28</td>
<td>8 / 16</td>
<td>0.009 *</td>
</tr>
<tr>
<td>Splenectomy (m/n)</td>
<td>6 / 28</td>
<td>6 / 16</td>
<td>0.3 *</td>
</tr>
<tr>
<td>Age (y)</td>
<td>28.5 (0-67)</td>
<td>33.3 (14-79)</td>
<td>0.25</td>
</tr>
<tr>
<td>LIC ($\mu g/g_{total}$)</td>
<td>2191 (300-9454)</td>
<td>3960 (883-8293)</td>
<td>0.25</td>
</tr>
<tr>
<td>Femtin ($\mu g/l$)</td>
<td>2195 (63-10529)</td>
<td>4484 (456-16391)</td>
<td>0.10</td>
</tr>
<tr>
<td>Amylase (U/L)</td>
<td>26.4 (12.9-51.0)</td>
<td>16.8 (12.9-32.9)</td>
<td>0.0011</td>
</tr>
<tr>
<td>Lipase (U/L)</td>
<td>32.6 (12.9-64.0)</td>
<td>16.3 (12.9-31.0)</td>
<td>< 10.4</td>
</tr>
</tbody>
</table>

* 2-tailed Fisher exact test

Fig. 0: Table 1. Characteristics of patients with cardiac $R^*_2 < 50 \text{ s}^{-1}$ ($T2^*_c > 20 \text{ ms}$) and $R^*_2 > 50 \text{ s}^{-1}$: median values (range) and significance of differences (Wilcoxon-Mann-Whitney U-test) between patient groups.

© Diagnostic Radiology, University Medical Center Hamburg-Eppendorf - Hamburg/DE
Conclusion

Adding to the suggestion that pancreatic R2* measurements could predict cardiac iron deposition (2), the exocrine pancreatic function might become an equivalent predictor, especially, as pancreatic iron seems to be found predominantly in the exocrine tissue.

A significant correlation was observed between pancreatic lipase and cardiac R2*, but not for liver iron, and ROC analysis for detecting patients with elevated cardiac R2* levels resulted in a high discrimination power by lipase. Using the exocrine pancreatic function parameters, serum pancreatic amylase and lipase, one could identify patients with iron overload in the liver also at risk of elevated cardiac iron concentration. However, this approach has to be verified on a larger patient scale. In any case, thalassemia patients and other iron overloaded patients with subnormal pancreatic amylase or lipase levels should undergo cardiac iron assessment by MRI. (see also Fig. 5 for suggestion)
Suggestion/ Hypothesis

- Lipase < 19 U/L
- Lipase ≥ 19 U/L
- Amylase < 23 U/L

Cardiac Iron?
(R2* > 50 s⁻¹)

Fig. 0: Suggestion/ Hypothesis

© Diagnostic Radiology, University Medical Center Hamburg-Eppendorf - Hamburg/DE
References

Personal Information

Dr. med. Jin Yamamura

(Attending Radiologist)

University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Department of Diagnostic and Interventional Radiology

Martinistrasse 52

20246 Hamburg

Fon: + 49 40 74105 8880

Fax: + 49 40 74105 2834

Email: j.yamamura@uke.de