Involvement of the somatosensory pathways in primary Sjögren's Syndrome: a diffusion-weighted imaging study

Poster No.: C-2198
Congress: ECR 2011
Type: Scientific Paper
Authors: L. Tzarouchi, N. Tsifetaki, A. Zikou, L. G. Astrakas, S. Konitsiotis, A. drosos, M. Argyropoulou; Ioannina/GR
Keywords: Neuroradiology brain, MR, MR-Diffusion/Perfusion, Imaging sequences, Statistics, Connective tissue disorders
DOI: 10.1594/ecr2011/C-2198

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Sjögren's syndrome (SS) is a chronic, systemic, autoimmune disease affecting 2-3% of the adult population. It can be classified as primary (pSS) when presenting in isolation, or secondary when associated with a connective tissue disease [1]. PSS is characterized by mononuclear infiltration and destruction of the exocrine glands, mainly the lachrymal and salivary glands, resulting in xerophthalmia and xerostomia [1]. Apart from the glandular features of the disease there are also extraglandular manifestations (e.g. arthralgia, pulmonary involvement, renal tubular acidosis, etc.) [2]. Since its original clinical description, neurological involvement has been reported in pSS [2,3]. Involvement of the peripheral nervous system (PNS) is a well-documented feature of the disease, with a reported prevalence of 20-25%, and is commonly manifested as ganglionopathies/sensory neuronopathies, axonal sensory and sensorimotor polyneuropathies, multiple mononeuropathies, autonomic neuropathies, small-fiber neuropathies, cranial neuropathies, and inflammatory myopathies [4,5]. The prevalence and the type of central nervous system (CNS) involvement, however, still remains a matter of controversy. The estimated frequencies of CNS findings are reported to range from 10% to 60%, depending on the parameters studied (e.g. patient selection, diagnostic criteria, etc.) [2,6].

The apparent diffusion coefficient value (ADC) is a parameter derived from diffusion-weighted MR images, which describes basic diffusion properties of the tissue [7]. The ADC depends on several aspects of tissue microstructure, including the diffusion across membranes and the tortuosity of extra-cellular space, influenced by extracellular matrix molecules [8]. Other microscopic features include the relation of ADC to electrical conductivity [7] and aspects of neurotransmission such as volume transmission [8]. To our knowledge changes in ADC values have never been addressed in patients with pSS.

Our purpose was to assess changes in ADC values in a group of unselected patients with pSS using a voxel-based analysis.
Methods and Materials

Sixteen consecutive, unselected patients with pSS, representative of our pSS population (16 females), aged 39-78 years (mean ± SD; 65.0±8.6 years), with disease duration of 2-28 years (mean ± SD; 10.5±5.75 years) were evaluated. The diagnosis of SS was established according to the American-European Consensus Criteria (AECC). Association with other connective tissue diseases was ruled out and only cases of pSS were included. The control group consisted of 16 age-matched healthy subjects, aged 39-77 (mean ± SD; 63.2±10.4 years). The study was performed with the approval of the Institutional Review Board, and the participants signed a written informed consent agreement.

Exclusion criteria included a history or clinical signs of cardiovascular disease, peripheral arterial disease, hepatic dysfunction (levels of transaminases > 1.5 times the upper limit of normal), renal insufficiency (serum creatinine > 1.6 mg/dl), proteinuria (more than 0.5 g/day), diabetes mellitus (DM) (fasting plasma glucose concentration ≥ 126 mg/dl or use of antidiabetic medication), hypertension (arterial blood pressure > 140/90 mmHg or use of antihypertensive medication), thyroid-stimulating hormone levels > 5 mU/ml and treatment with corticosteroids during the last months six months before the study. None of the study patients or control subjects had findings suggestive of CNS or psychiatric disorder.

MRI data were acquired using a 1.5-T scanner (Gyroscan ACS NT; Philips Medical Systems, Best, The Netherlands). The MRI protocol included a multi-slice, spin-echo planar diffusion weighted sequence (TE: 131 msec, TR: 9807 msec, matrix size: 112 x 128, thickness: 3 mm, FOV: 230 mm, max b-value: 700 sec/mm²). Maps of the ADC values were reconstructed for each diffusion weighted image using the DTI studio software.

Data pre-processing and analysis for the VBM were performed using MATLAB 7.0 (MathWorks, Natick, MA, USA) and Statistical Parametric Mapping SPM 5.0 (Wellcome Department of Cognitive Neurology, London, UK). For each b0 EPI image, normalization parameters were estimated with 12-parameter affine and 16 nonlinear iterations using the b0 EPI template supplied with SPM 5.0 and then applied to the corresponding ADC map. Normalized ADC and MTR maps were smoothed with a 10-mm, full-width, half maximum Gaussian kernel to improve normal distribution and increase signal-to-noise ratio.

Differences between the patients and healthy control subjects were estimated using a two-sample t test. Inferences about regional differences in ADC values were made using a significance threshold level of p < 0.05 with FWE correction with multiple comparisons.
Results

Patients with pSS demonstrated areas of statistically significant reduced ADC values when compared to controls (figures 1-3). Restricted diffusion was observed in patients with pSS when compared to controls in the midbrain and pons. The distribution of these areas was along the somatosensory pathways bilaterally (P < 0.05, FWE correction for multiple comparisons).
Fig. 0: Differences in Apparent Diffusion Coefficient (ADC) values between patients with primary Sjögren’s syndrome (pSS) and healthy control subjects. The results of the voxel-based analysis for differences in ADC values are superimposed on an axial T1-weighted brain template. The colour scale (z-score) encodes areas of significant differences in ADC values between patients with pSS and control subjects. Colour represents regions of decreased ADC values in patients with pSS.

© Department of Radiology, Medical School of Ioannina - Ioannina/GR
Fig. 0: Differences in Apparent Diffusion Coefficient (ADC) values between patients with primary Sjögren's syndrome (pSS) and healthy control subjects. The results of the voxel-based analysis for differences in ADC values are superimposed on a coronal T1-weighted brain template. The colour scale (z-score) encodes areas of significant differences in ADC values between patients with pSS and control subjects. Colour represents regions of decreased ADC values in patients with pSS (P

© Department of Radiology, Medical School of Ioannina - Ioannina/GR
Fig. 0: Differences in Apparent Diffusion Coefficient (ADC) values between patients with primary Sjögren's syndrome (pSS) and healthy control subjects. The results of the voxel-based analysis for differences in ADC values are superimposed on a sagittal T1-weighted brain template. The colour scale (z-score) encodes areas of significant differences in ADC values between patients with pSS and control subjects. Colour represents regions of decreased ADC values in patients with pSS

© Department of Radiology, Medical School of Ioannina - Ioannina/GR
Conclusion

Involvement of the PNS is a well documented feature in patients with pSS [4,5]. Several neuropathy subtypes have been described in pSS. PNS manifestations include ganglionopathies/sensory neuronopathies, axonal sensory and sensorimotor polyneuropathies, multiple mononeuropathies, autonomic neuropathies, small fiber neuropathies and cranial neuropathies [4,5]. Predominantly, sensory or pure sensory neuropathies are most common (about 50-60%) [4,5]. Dorsal root ganglionitis and vasculitis are the main pathogenetic mechanisms of PNS manifestations [5]. Vasculitic neuropathy; inflammation of the vasa nervorum serving the peripheral sensory nerves, through the ascending sensory pathways may be at the basis of the restricted diffusion observed in the present study in patients with pSS. Similarly, restricted diffusion has been described along the neuronal pathways in cases of inflammation of the vessels serving the cranial nerves [9].
References

7. Sotak CH. Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states. *Neurochem Int* 2004;45:569-582
Personal Information

Loukia C Tzarouchi
Radiology Department
University Hospital of Ioannina
Medical School, University of Ioannina
E-mail: ltzar@cc.uoi.gr