T2 and T2* mapping of lumbar intervertebral discs in patients with low back pain: Initial results on clinical use with 3.0 Tesla MRI

Poster No.: C-2583
Congress: ECR 2010
Type: Scientific Exhibit
Topic: Neuro - Spine
Authors: G. H. Welsch¹, S. Trattnig¹, D. Stelzeneder¹, T. Paternostro-Slua¹, F. F. Hennig², T. C. Mamisch³; ¹Vienna/AT, ²Erlangen/DE, ³Berne/CH
Keywords: Spine, T2, Biochemical MRI
Keywords: Neuroradiology spine
DOI: 10.1594/ecr2010/C-2583

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
Purpose

Morphological magnetic resonance imaging (MRI) is a well-established method for the evaluation of intervertebral discs (IVDs) allowing for a grading of disc degeneration. Axial and sagittal T1 and T2-weighted sequences are standard diagnostic methods, however they are limited in detecting early signs of degeneration (3). The use of biochemical MRI and parametric mapping techniques is becoming increasingly important and may be capable to detect these early changes in the tissue ultrastructure. Although biochemical techniques like T2 relaxation time mapping are mainly used to assess the composition of articular cartilage (4), their use in the evaluation of the IVD is providing comparably promising results (5). Quantitative T2 provides information about the interaction of water molecules and the collagen network within the IVD. Besides classical spin-echo based T2 mapping, gradient-echo based T2* mapping was recently introduced in the description of articular cartilage (6, 7). T2* relaxation time mapping may theoretically also provide valuable information of the IVD ultrastructure, possibly comparable to standard T2, but with the additional benefit of three-dimensional acquisition capability together with high signal and high spatial resolution in a short scan time.

Aim of the study was to compare and correlate T2 and T2* relaxation in patients suffering from low back pain.
Methods and Materials

Thirty patients with a mean age of 37.7 ± 9.9 years, suffering from low back pain were prospectively enclosed. All MR examinations were performed on a 3 Tesla MR unit (Magnetom Trio; Siemens Medical Solutions, Erlangen, Germany). Morphological (sagittal T1-FSE, sagittal and axial T2-FSE) and biochemical (sagittal T2 and T2* mapping; figure 1) MRI was performed covering the IVDs L1-L2 to L5-S1. T2 relaxation time measurements were prepared by a multi-echo spin-echo sequence with a TR of 1200 msec, TE 13.8, 27.6, 41.4, 55.2, 69.0 and 82.8 msec, pixel matrix 256 x 256 and voxel size 0.9 x 0.9 x 5 mm; the bandwidth was 228 Hz/pixel, with 12 slices, and a total acquisition time of 7:45 minutes. T2* relaxation time measurements were prepared by a multi-echo gradient-echo sequence with a TR of 600 msec, TE 5.7, 9.8, 14, 18.1, 22.2 and 26.4. FoV, matrix and slice thickness were kept consistent for the T2 and the T2* sequences to guarantee comparability; the bandwidth was 260 Hz/pixel, with 12 slices, and a total acquisition time of 3:52 minutes. T2 and T2* relaxation times were obtained from on-line reconstructed T2 and T2* maps using a pixel-wise, mono-exponential non-negative least squares (NNLS) fit analysis. All IVDs were morphologically classified using the Pfirrmann score (8). Region-of-interest (ROI) analysis was performed on midsagittal T2 and T2* maps at 5 ROIs from anterior (ROI I) to posterior (ROI V) to obtain information on spatial variation between the annulus fibrosus (~ROI I and V) and the nucleus pulposus (~ROI 3). ROI Because there is a gradual transition from the annulus fibrosus to the nucleus pulposus and difficulties to define a clear border, ROIs were standardized in a reproducible way with five equally sized rectangular ROIs on two adjacent central slices (each ROI measured 20% of the disc diameter in the midsagittal plane). Statistical analysis of variance and Pearson correlation was performed.
Results

Altogether 150 IVDs were analyzed, including 1500 ROIs for T2 and 1500 ROIs for T2*. According to the Pfirrmann Score, eight discs (5.3%) were classified as grade I, 90 (60.0%) grade II, 39 (26.0%) grade III, 13 (8.7%) grade IV, and no discs had a collapsed disc space (grade V). Both, T2 and T2*, were able to clearly differentiate between all grades of IVD degeneration according to the Pfirrmann grading system (p<0.05) as visualized in figure 2, where T2 (A) and T2* (B) values (ms) are displayed relating to the Pfirrmann score. The spatial variation from the annulus fibrosus (ROI I) anterior to the nucleus pulposus (ROI II, III and IV) and to the annulus fibrosus (ROI V) posterior was significant (p<0.05) for Pfirrmann grade I between all 5 ROIs; for Pfirrmann grade II and III, the spatial variation, was only significant in between ROI I to ROIs II, III and IV to ROI V (p<0.05). For Pfirrmann grade V, there was still a significant anterior spatial variation in between ROI I and ROIs II, III and IV, whereas no spatial variation could be assessed between ROIs II, III and IV and the posterior ROI V (p>0.05). This spatial behavior of the T2 and T2* values was identical, however the T2* evaluation showed comparably high values especially in the posterior ROI V at higher Pfirrmann grades. The assessed correlation between T2 and T2* was highly significant (p<0.001) with medium Pearson correlation coefficients of 0.380 (ROI I), 0.434 (ROI II), 0.376 (ROI III), 0.263 (ROI IV) and 0.251 (ROI V).
Fig. 0: Figure 1: Sagittal T2 (A) and T2* (B) relaxation time mapping of the lumbar spine (L1/L2 - L5/S1) of a patient with low back pain. Changes within the biochemical ultra-structure of the intervertebral discs are visible at L2/L3 and L5/S1.

© MR Center - High Field MRI, Department of Radiology, Medical University of Vienna - Vienna/AT
Fig. 0: Figure 2: Results of T2 (A) and T2* (B) mapping according to the morphologically assessed Pfirrmann scores from Pfirrmann Score 1 (healthy intervertebral disc) to Pfirrmann Score 4 (clear progredient degeneration). Whereas a differentiation in between the different regions of interest (ROI 1 - 5), representing the Annulus fibrosus (ROI 1; ROI 5) and the nucleus pulposus (ROI 3), is cleraly possible at Pfirrmann Grade 1, this impairs at higher Pfirrmann scores.

© MR Center - High Field MRI, Department of Radiology, Medical University of Vienna - Vienna/AT
Conclusion

In the presented initial study the use of T2 as well as T2* relaxation time mapping, demonstrates that all grades of IVD degeneration can be quantified and distinguished. Besides the established T2 methodology, T2* provides a fast and promising tool in the biochemical evaluation of IVDs. Interestingly especially T2* relaxation times in the posterior ROI V, representing the dorsal annulus fibrosus (where a disc herniation occurs), showed comparably high values in higher IVD degeneration. The presented preliminary results of the use of T2 and, to our knowledge for the first time, T2* mapping in the IVD, may present an interesting and valuable tool in the diagnosis and monitoring of patients with low back pain.
References