Brought to you by
ECR 2019 / C-2108
Certificate of Merit
Influence of acquisition parameters on morphometric values obtained from structural magnetic resonance images
Congress: ECR 2019
Poster No.: C-2108
Type: Scientific Exhibit
Keywords: Artificial Intelligence, Anatomy, Neuroradiology brain, MR, Segmentation, Computer Applications-General, Computer Applications-Detection, diagnosis, Dementia
Authors: I. Evangelista, C. L. Galimberti, G. Pascariello, J. C. Gomez, A. L. Rodríguez Musso, P. Donnelly-Kehoe; Rosario/AR
DOI:10.26044/ecr2019/C-2108

References

[1] Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774-781.

 

[2] Pedregosa, F. et al (2011). Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825-2830.

 

[3] P. A. Donnelly-Kehoe, G. Pascariello, J. C. Gomez. The changing brain in healthy aging: A multi-MRI machine and multicenter surface-based morphometry study. In Proceedings of SPIE - The International Society for Optical Engineering. Volume 10160, 2017. Article number 101600B.

 

[4] Donnelly-Kehoe, P. A., Pascariello, G. O., Gómez, J. C., & Alzheimers Disease Neuroimaging Initiative. (2018). Looking for Alzheimer's Disease morphometric signatures using machine learning techniques. Journal of neuroscience methods, 302, 24-34.

 

[5] Maaten, L. V. D., y Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.

 

POSTER ACTIONS Add bookmark Contact presenter Send to a friend Download pdf
SHARE THIS POSTER
2 clicks for more privacy: On the first click the button will be activated and you can then share the poster with a second click.

This website uses cookies. Learn more